Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. Howev...Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. However, premature convergence is the major drawback of MODE, especially when there are numerous local Pareto optimal solutions. To overcome this problem, we propose a MODE with a diversity enhancement (MODE-DE) mechanism to prevent the algorithm becoming trapped in a locally optimal Pareto front. The proposed algorithm combines the current population with a number of randomly generated parameter vectors to increase the diversity of the differential vectors and thereby the diversity of the newly generated offspring. The performance of the MODE-DE algorithm was evaluated on a set of 19 benchmark problem codes available from http://www3.ntu.edu.sg/home/epnsugan/. With the proposed method, the performances were either better than or equal to those of the MODE without the diversity enhancement.展开更多
将基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)应用于工程优化问题时,由于各目标函数在数量级及量纲上的不同,需要对目标函数进行归一化处理.首先,采用一种自适应ε约束差分进化...将基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)应用于工程优化问题时,由于各目标函数在数量级及量纲上的不同,需要对目标函数进行归一化处理.首先,采用一种自适应ε约束差分进化算法(εConstrained Differential Evolution,εDE)寻找各个目标在Pareto前沿上的最大值和最小值,利用这些值对各目标进行归一化处理;然后,用MOEA/D进行求解,并在算法中加入了自适应ε约束处理技术;最后,采用一个标准测试问题和一个焊接梁设计优化问题对该算法进行测试,并与其他两种归一化方法进行了比较.根据提出的方法,MOEA/D能对Pareto前沿的一端进行集中优化,因而能处理一些Pareto前沿两端难以优化的问题.展开更多
基金Project(No.0521010020)supported by the A*Star(Agency for Science,Technology and Research),Singapore
文摘Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. However, premature convergence is the major drawback of MODE, especially when there are numerous local Pareto optimal solutions. To overcome this problem, we propose a MODE with a diversity enhancement (MODE-DE) mechanism to prevent the algorithm becoming trapped in a locally optimal Pareto front. The proposed algorithm combines the current population with a number of randomly generated parameter vectors to increase the diversity of the differential vectors and thereby the diversity of the newly generated offspring. The performance of the MODE-DE algorithm was evaluated on a set of 19 benchmark problem codes available from http://www3.ntu.edu.sg/home/epnsugan/. With the proposed method, the performances were either better than or equal to those of the MODE without the diversity enhancement.
文摘将基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)应用于工程优化问题时,由于各目标函数在数量级及量纲上的不同,需要对目标函数进行归一化处理.首先,采用一种自适应ε约束差分进化算法(εConstrained Differential Evolution,εDE)寻找各个目标在Pareto前沿上的最大值和最小值,利用这些值对各目标进行归一化处理;然后,用MOEA/D进行求解,并在算法中加入了自适应ε约束处理技术;最后,采用一个标准测试问题和一个焊接梁设计优化问题对该算法进行测试,并与其他两种归一化方法进行了比较.根据提出的方法,MOEA/D能对Pareto前沿的一端进行集中优化,因而能处理一些Pareto前沿两端难以优化的问题.