The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp...The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively.展开更多
The Hessian matrix has a wide range of applications in image processing,such as edge detection,feature point detection,etc.This paper proposes an image enhancement algorithm based on the Hessian matrix.First,the Hessi...The Hessian matrix has a wide range of applications in image processing,such as edge detection,feature point detection,etc.This paper proposes an image enhancement algorithm based on the Hessian matrix.First,the Hessian matrix is obtained by convolving the derivative of the Gaussian function.Then use the Hessian matrix to enhance the linear structure in the image.Experimental results show that the method proposed in this paper has strong robustness and accuracy.展开更多
Image enhancement is an important preprocessing task as the contrast is low in most of the medical images,Therefore,enhancement becomes the mandatory process before actual image processing should start.This research a...Image enhancement is an important preprocessing task as the contrast is low in most of the medical images,Therefore,enhancement becomes the mandatory process before actual image processing should start.This research article proposes an enhancement of the model-based differential operator for the images in general and Echocardiographic images,the proposed operators are based on Grunwald-Letnikov(G-L),Riemann-Liouville(R-L)and Caputo(Li&Xie),which are the definitions of fractional order calculus.In this fractional-order,differentiation is well focused on the enhancement of echocardiographic images.This provoked for developing a non-linear filter mask for image enhancement.The designed filter is simple and effective in terms of improving the contrast of the input low contrast images and preserving the textural features,particularly in smooth areas.The novelty of the proposed method involves a procedure of partitioning the image into homogenous regions,details,and edges.Thereafter,a fractional differential mask is appropriately chosen adaptively for enhancing the partitioned pixels present in the image.It is also incorporated into the Hessian matrix with is a second-order derivative for every pixel and the parameters such as average gradient and entropy are used for qualitative analysis.The wide range of existing state-of-the-art techniques such as fixed order fractional differential filter for enhancement,histogram equalization,integer-order differential methods have been used.The proposed algorithm resulted in the enhancement of the input images with an increased value of average gradient as well as entropy in comparison to the previous methods.The values obtained are very close(almost equal to 99.9%)to the original values of the average gradient and entropy of the images.The results of the simulation validate the effectiveness of the proposed algorithm.展开更多
Wound repair is a complex challenge for both clinical practitioners and researchers.Conventional approaches for wound repair have several limitations.Stem cell-based therapy has emerged as a novel strategy to address ...Wound repair is a complex challenge for both clinical practitioners and researchers.Conventional approaches for wound repair have several limitations.Stem cell-based therapy has emerged as a novel strategy to address this issue,exhibiting significant potential for enhancing wound healing rates,improving wound quality,and promoting skin regeneration.However,the use of stem cells in skin regeneration presents several challenges.Recently,stem cells and biomaterials have been identified as crucial components of the wound-healing process.Combination therapy involving the development of biocompatible scaffolds,accompanying cells,multiple biological factors,and structures resembling the natural extracellular matrix(ECM)has gained considerable attention.Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells,providing them with an environment conducive to growth,similar to that of the ECM.These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing.This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing,emphasizing their capacity to facilitate stem cell adhesion,proliferation,differentiation,and paracrine functions.Additionally,we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.展开更多
Deep geothermal energy presents large untapped renewable energy potential could significantly contribute to global energy needs. However, developing geothermal projects involves uncertainties regarding adequate geothe...Deep geothermal energy presents large untapped renewable energy potential could significantly contribute to global energy needs. However, developing geothermal projects involves uncertainties regarding adequate geothermal brine extraction and huge costs related to preparation phases and consequently drilling and stimulation activities. Therefore, evaluating utilization alternatives of such projects is a complex decision-making problem effectively addressed using multi-criteria decision-making (MCDM) methods. This study introduces the MCDM method utilizing analytic hierarchy process (AHP) and weighted decision matrix (WDM) to assess different utilization alternatives (electricity generation, direct heat use and cogeneration). The AHP method determines the weight of each criterion and sub-criterion, while the WDM calculates the final project grade. Five criteria groups - technological, geological, economic, societal and environmental – comprising twenty-eight influencing factors were selected and used for the assessment of investment in Enhanced Geothermal Systems (EGS) projects. The AHP-WDM method was used by 38 experts from six categories: industry, educational institution, research and technology organization (RTO), small- and medium-sized enterprises (SME), local community and other. These diverse expert inputs aimed to capture varying perspectives and knowledge influence investment decisions in geothermal energy. The results were analysed accordingly. The results underscore the importance of incorporating different viewpoints to develop robust, credible, and effective investment strategies for EGS projects. Therefore, this method will contribute to more efficient EGS project development, enabling thus a greater penetration of the EGS into the market. Additionally, the proposed AHP-WDM method was implemented for a case study examining two locations. Locations were assessed and compared on scenario-based evaluation. The results confirmed the method's adequacy for assessing various end uses and comparing project feasibility across different locations.展开更多
基金the Key Projects of Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China (No.6140922010201)the Key R&D Plan of Zhenjiang in 2018(No.GY2018021)。
文摘The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively.
基金supported by the key scientific research projects of the Hunan Provincial Department of Education (No.19A099,20A102)the Educational Reform Project of the Hunan Provincial Department of Education (No.HNJG-2021-1121)+2 种基金the Hunan First Normal University Teaching Reform Project (No.XYS21J09)Shaoyang City Science and Technology Bureau Science and Technology Research Project (No.2020GX31)Shaoyang University Cooperation Project (No.2019HX115).
文摘The Hessian matrix has a wide range of applications in image processing,such as edge detection,feature point detection,etc.This paper proposes an image enhancement algorithm based on the Hessian matrix.First,the Hessian matrix is obtained by convolving the derivative of the Gaussian function.Then use the Hessian matrix to enhance the linear structure in the image.Experimental results show that the method proposed in this paper has strong robustness and accuracy.
基金This research is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R195),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Image enhancement is an important preprocessing task as the contrast is low in most of the medical images,Therefore,enhancement becomes the mandatory process before actual image processing should start.This research article proposes an enhancement of the model-based differential operator for the images in general and Echocardiographic images,the proposed operators are based on Grunwald-Letnikov(G-L),Riemann-Liouville(R-L)and Caputo(Li&Xie),which are the definitions of fractional order calculus.In this fractional-order,differentiation is well focused on the enhancement of echocardiographic images.This provoked for developing a non-linear filter mask for image enhancement.The designed filter is simple and effective in terms of improving the contrast of the input low contrast images and preserving the textural features,particularly in smooth areas.The novelty of the proposed method involves a procedure of partitioning the image into homogenous regions,details,and edges.Thereafter,a fractional differential mask is appropriately chosen adaptively for enhancing the partitioned pixels present in the image.It is also incorporated into the Hessian matrix with is a second-order derivative for every pixel and the parameters such as average gradient and entropy are used for qualitative analysis.The wide range of existing state-of-the-art techniques such as fixed order fractional differential filter for enhancement,histogram equalization,integer-order differential methods have been used.The proposed algorithm resulted in the enhancement of the input images with an increased value of average gradient as well as entropy in comparison to the previous methods.The values obtained are very close(almost equal to 99.9%)to the original values of the average gradient and entropy of the images.The results of the simulation validate the effectiveness of the proposed algorithm.
基金Supported by CAMS Innovation Fund for Medical Sciences,No.2020-I2M-C&T-A-004National High Level Hospital Clinical Research Funding,No.2022-PUMCH-A-210,No.2022-PUMCH-B-041,and No.2022-PUMCH-C-025and National Key R&D Program of China,No.2020YFE0201600.
文摘Wound repair is a complex challenge for both clinical practitioners and researchers.Conventional approaches for wound repair have several limitations.Stem cell-based therapy has emerged as a novel strategy to address this issue,exhibiting significant potential for enhancing wound healing rates,improving wound quality,and promoting skin regeneration.However,the use of stem cells in skin regeneration presents several challenges.Recently,stem cells and biomaterials have been identified as crucial components of the wound-healing process.Combination therapy involving the development of biocompatible scaffolds,accompanying cells,multiple biological factors,and structures resembling the natural extracellular matrix(ECM)has gained considerable attention.Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells,providing them with an environment conducive to growth,similar to that of the ECM.These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing.This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing,emphasizing their capacity to facilitate stem cell adhesion,proliferation,differentiation,and paracrine functions.Additionally,we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.
基金funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 792037support from Department of Energy and Power Systems of University of Zagreb Faculty of Electrical Engineering and Computing.
文摘Deep geothermal energy presents large untapped renewable energy potential could significantly contribute to global energy needs. However, developing geothermal projects involves uncertainties regarding adequate geothermal brine extraction and huge costs related to preparation phases and consequently drilling and stimulation activities. Therefore, evaluating utilization alternatives of such projects is a complex decision-making problem effectively addressed using multi-criteria decision-making (MCDM) methods. This study introduces the MCDM method utilizing analytic hierarchy process (AHP) and weighted decision matrix (WDM) to assess different utilization alternatives (electricity generation, direct heat use and cogeneration). The AHP method determines the weight of each criterion and sub-criterion, while the WDM calculates the final project grade. Five criteria groups - technological, geological, economic, societal and environmental – comprising twenty-eight influencing factors were selected and used for the assessment of investment in Enhanced Geothermal Systems (EGS) projects. The AHP-WDM method was used by 38 experts from six categories: industry, educational institution, research and technology organization (RTO), small- and medium-sized enterprises (SME), local community and other. These diverse expert inputs aimed to capture varying perspectives and knowledge influence investment decisions in geothermal energy. The results were analysed accordingly. The results underscore the importance of incorporating different viewpoints to develop robust, credible, and effective investment strategies for EGS projects. Therefore, this method will contribute to more efficient EGS project development, enabling thus a greater penetration of the EGS into the market. Additionally, the proposed AHP-WDM method was implemented for a case study examining two locations. Locations were assessed and compared on scenario-based evaluation. The results confirmed the method's adequacy for assessing various end uses and comparing project feasibility across different locations.