In this paper, we propose a quantum secret sharing protocol utilizing polarization modulated doubly entangled photon pairs. The measurement devices are constructed. By modulating the polarizations of entangled photons...In this paper, we propose a quantum secret sharing protocol utilizing polarization modulated doubly entangled photon pairs. The measurement devices are constructed. By modulating the polarizations of entangled photons, the boss could encode secret information on the initial state and share the photons with different members to realize the secret sharing process. This protocol shows the security against intercept-resend attack and dishonest member cheating. The generalized quantum secret sharing protocol is also discussed.展开更多
We present an analytical analysis of the spatial resolution of quantum ghost imaging implemented by entangled photons from a general, spontaneously parametric, down-conversion process. We find that the resolution is a...We present an analytical analysis of the spatial resolution of quantum ghost imaging implemented by entangled photons from a general, spontaneously parametric, down-conversion process. We find that the resolution is affected by both the pump beam waist and the nonlinear crystal length. Hence, we determined a method to improve the resolution for a certain imaging setup. It should be noted that the resolution is not uniquely related to the degree of entanglement of the photon pair since the resolution can be optimized for a certain degree of entanglement. For certain types of Einstein-Podolsky-Rosen(EPR) states——namely the momentum-correlated or momentum-positively correlated states——the resolution exhibits a simpler relationship with the pump beam waist and crystal length. Further, a vivid numerical simulation of ghost imaging is presented for different types of EPR states,which supports our analysis. This work discusses applicable references to the applications of quantum ghost imaging.展开更多
The long-range interaction between Rydberg-excited atoms endows a medium with large optical nonlinearity.Here,we demonstrate an optical switch to operate on a single photon from an entangled photon pair under a Rydber...The long-range interaction between Rydberg-excited atoms endows a medium with large optical nonlinearity.Here,we demonstrate an optical switch to operate on a single photon from an entangled photon pair under a Rydberg electromagnetically induced transparency configuration.With the presence of the Rydberg blockade effect,we switch on a gate field to make the atomic medium nontransparent thereby absorbing the single photon emitted from another atomic ensemble via the spontaneous fourwave mixing process.In contrast to the case without a gate field,more than 50%of the photons sent to the switch are blocked,and finally achieve an effective single-photon switch.There are on average 1-2 gate photons per effective blockade sphere in one gate pulse.This switching effect on a single entangled photon depends on the principal quantum number and the photon number of the gate field.Our experimental progress is significant in the quantum information process especially in controlling the interaction between Rydberg atoms and entangled photon pairs.展开更多
We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three partie...We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three parties. Our schemes only need polarizing beam splitters and single-photon detectors. In addition, the schemes can be demonstrated within current experimental technology.展开更多
We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in tile strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G...We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in tile strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A and Malpuech G 2008 Phys. Rev. Lett. 100 240404), and by Robert et al. (Robert J, Gippius N A and Malpuech G 2009 Phys. Rev. B 79 155317) is modified by considering irreversible dissipation and incoherent continuous pumping for the quantum dot, which is necessary to connect the realistic experiment. The dynamics of tile system is analysed by employing the Born Markov master equation, through which the spectra for the system are computed as a fnnction of various parameters. By means of this analysis the photon-reabsorption process in the strong- coupling regime is first observed and analysed from the perspective of radiation spectrum and the optimal parameters for observing energy-entangled photon pairs are identified.展开更多
Semiconductor quantum dots are leading candidates for the on-demand generation of single photons and entangled photon pairs.High photon quality and indistinguishability of photons from different sources are critical f...Semiconductor quantum dots are leading candidates for the on-demand generation of single photons and entangled photon pairs.High photon quality and indistinguishability of photons from different sources are critical for quantum information applications.The inability to grow perfectly identical quantum dots with ideal optical properties necessitates the application of post-growth tuning techniques via e.g.temperature,electric,magnetic or strain fields.In this review,we summarize the state-of-the-art and highlight the advantages of strain tunable non-classical photon sources based on epitaxial quantum dots.Using piezoelectric crystals like PMN-PT,the wavelength of single photons and entangled photon pairs emitted by InGaAs/GaAs quantum dots can be tuned reversibly.Combining with quantum light-emitting diodes simultaneously allows for electrical triggering and the tuning of wavelength or exciton fine structure.Emission from light hole exciton can be tuned,and quantum dot containing nanostructure such as nanowires have been piezo-integrated.To ensure the indistinguishability of photons from distant emitters,the wavelength drift caused by piezo creep can be compensated by frequency feedback,which is verified by two-photon interference with photons from two stabilized sources.Therefore,strain tuning proves to be a flexible and reliable tool for the development of scalable quantum dots-based non-classical photon sources.展开更多
It is generally believed that nonorthogonal operations which can realize the state transformation between two nonorthogonal bases may ensure the security of many quantum communication protocols. However, in this paper...It is generally believed that nonorthogonal operations which can realize the state transformation between two nonorthogonal bases may ensure the security of many quantum communication protocols. However, in this paper, we present a powerful attack against quantum secret sharing protocols of these kinds. Applying entangled photons as fake signals, Eve can successfully steal the exact information without being revealed. We also give our effective modification to improve it. Under the suggested checking strategy, even to Eve's most general attack, it is robust and secure.展开更多
It is shown that the configuration of phase coding for quantum key distribution with single photon can also be used for continuous variable quantum key distribution. Therefore the robust long-distance high-speed quant...It is shown that the configuration of phase coding for quantum key distribution with single photon can also be used for continuous variable quantum key distribution. Therefore the robust long-distance high-speed quantum key distribution can be achieved with current technology.展开更多
Bell tests with entangled light have been performed many times in many ways using linear polarizers, but the same tests have never been done with a circular polarizer. Until recently there has never been a true circul...Bell tests with entangled light have been performed many times in many ways using linear polarizers, but the same tests have never been done with a circular polarizer. Until recently there has never been a true circular polarization beamsplitter—an optical component that separates light directly into left and right handed polarizations. Using a true circular polarization beamsplitter based on birefringent gratings, entangled light has been analyzed with unexpected results.展开更多
We put forward an optimal entanglement concentration protocol(ECP) for recovering an arbitrary less-entangled multi-photon Greenberger–Horne–Zeilinger(GHZ) state into the maximally entangled GHZ state based on t...We put forward an optimal entanglement concentration protocol(ECP) for recovering an arbitrary less-entangled multi-photon Greenberger–Horne–Zeilinger(GHZ) state into the maximally entangled GHZ state based on the photonic Faraday rotation in low-quality(Q) cavity. In the ECP, only one pair of less-entangled multi-photon GHZ state and one auxiliary photon are required, and the concentration task can be realized by local operations. Moreover, our ECP can be used repeatedly to further concentrate the discarded items of conventional ECPs, which can increase its success probability largely. Under the practical imperfect detection condition, our protocol can still work with relatively high success probability. This ECP has application potential in current and future quantum communication.展开更多
We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous param...We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous parametric down conversion process,and then,the q-plate acts as a SAM-to-OAM transverter to transform the polarization entangled pairs into the hybrid entangled pattern,which opens the possibility to exploit the features of the higher-dimensional space of OAM state to encode information.In the manipulation and encoding process,Alice performs the SAM measurement by modulating the polarization stateπ lθx on one photon,whereas Bob modulates the OAM sector state lx' on the other photon to encode his key elements using the designed holograms which is implemented by the computer-controlled SLM.With coincidence measurement,Alice could extract the key information.It is showed that N-based keys can be encoded with each pair of entangled photon,and this scheme is robust against Eve’s individual attack.Also,the MUBs are not used.Alice and Bob do not need the classical communication for the key recovery.展开更多
In the regime of weak nonlinearity we present two general,feasible schemes for manipulating photon states.One is an entangler for generating any one of the n-photon Greenberger-Horne-Zeilinger(GHZ)states.Interactions ...In the regime of weak nonlinearity we present two general,feasible schemes for manipulating photon states.One is an entangler for generating any one of the n-photon Greenberger-Horne-Zeilinger(GHZ)states.Interactions of the incoming photons with crossKerr media followed by a phase shift gate and a measurement on a probe beam plus appropriate local operations using classical feed-forward of the measurement results allow one to obtain the desired states in a nearly deterministic manner.The second scheme discussed is an analyzer for multiphoton maximally entangled states,which is derived from the above entangler.In this scheme,all of the 2nn-photon GHZ states can,nearly deterministically,be discriminated.展开更多
In this paper,by using the second-order parametric down-conversion of the nonlinear crystal,the spin-1 state is simulated by the two-photon polarization entangled modes. Through adjusting the laser pulse power density...In this paper,by using the second-order parametric down-conversion of the nonlinear crystal,the spin-1 state is simulated by the two-photon polarization entangled modes. Through adjusting the laser pulse power density,the efficiency of second-order parametric down-conversion is enhanced. The intensity of the spin-1 state is 0.5/s. The fidelity of the state is up to F=0.891±0.002,and the contrast is C=17.3. The results provide a new method for Stern-Gerlach measurement on the spin-1 system.展开更多
We propose schemes for the efficient information transfer between a propagating photon and a quantum-dot(QD) spin qubit in an optical microcavity that have no auxiliary particles required. With these methods, the in...We propose schemes for the efficient information transfer between a propagating photon and a quantum-dot(QD) spin qubit in an optical microcavity that have no auxiliary particles required. With these methods, the information transfer between two photons or two QD spins can also be achieved. All of our proposals can work with high fidelity, even with a high leakage rate. What is more, each information transfer process above can also be seen as a controlled-NOT(CNOT) operation. It is found that the information transfer can be equivalent to a CNOT gate. These proposals will promote more efficient quantum information networks and quantum computation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10704010)
文摘In this paper, we propose a quantum secret sharing protocol utilizing polarization modulated doubly entangled photon pairs. The measurement devices are constructed. By modulating the polarizations of entangled photons, the boss could encode secret information on the initial state and share the photons with different members to realize the secret sharing process. This protocol shows the security against intercept-resend attack and dishonest member cheating. The generalized quantum secret sharing protocol is also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174121,11321063,91121001,and 91321312)the National Program on Key Basic Research Project(Grant No.2012CB921802)
文摘We present an analytical analysis of the spatial resolution of quantum ghost imaging implemented by entangled photons from a general, spontaneously parametric, down-conversion process. We find that the resolution is affected by both the pump beam waist and the nonlinear crystal length. Hence, we determined a method to improve the resolution for a certain imaging setup. It should be noted that the resolution is not uniquely related to the degree of entanglement of the photon pair since the resolution can be optimized for a certain degree of entanglement. For certain types of Einstein-Podolsky-Rosen(EPR) states——namely the momentum-correlated or momentum-positively correlated states——the resolution exhibits a simpler relationship with the pump beam waist and crystal length. Further, a vivid numerical simulation of ghost imaging is presented for different types of EPR states,which supports our analysis. This work discusses applicable references to the applications of quantum ghost imaging.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0304800)the National Natural Science Foundation of China(Grant Nos.61525504,61722510,61435011,11174271,61275115,and 11604322)+1 种基金the Anhui Initiative in Quantum Information Technologies(Grant No.AHY020200)the Youth Innovation Pro motion Association of Chinese Academy of Sciences(Grant No.2018490)。
文摘The long-range interaction between Rydberg-excited atoms endows a medium with large optical nonlinearity.Here,we demonstrate an optical switch to operate on a single photon from an entangled photon pair under a Rydberg electromagnetically induced transparency configuration.With the presence of the Rydberg blockade effect,we switch on a gate field to make the atomic medium nontransparent thereby absorbing the single photon emitted from another atomic ensemble via the spontaneous fourwave mixing process.In contrast to the case without a gate field,more than 50%of the photons sent to the switch are blocked,and finally achieve an effective single-photon switch.There are on average 1-2 gate photons per effective blockade sphere in one gate pulse.This switching effect on a single entangled photon depends on the principal quantum number and the photon number of the gate field.Our experimental progress is significant in the quantum information process especially in controlling the interaction between Rydberg atoms and entangled photon pairs.
基金The project supported by the Natural Science Foundation of the Education Department of Anhui Province under Grant Nos. 2006kj070A and 2006kj057B, and the Talent Foundation of Anhui University
文摘We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three parties. Our schemes only need polarizing beam splitters and single-photon detectors. In addition, the schemes can be demonstrated within current experimental technology.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405)the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068, and 10979065)+1 种基金the Program for New Century Excellent Talents in University (Grant No. NTCE-10-0261)the Chinese Universities Scientific Fund (Grant No. 2011RC0402)
文摘We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in tile strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A and Malpuech G 2008 Phys. Rev. Lett. 100 240404), and by Robert et al. (Robert J, Gippius N A and Malpuech G 2009 Phys. Rev. B 79 155317) is modified by considering irreversible dissipation and incoherent continuous pumping for the quantum dot, which is necessary to connect the realistic experiment. The dynamics of tile system is analysed by employing the Born Markov master equation, through which the spectra for the system are computed as a fnnction of various parameters. By means of this analysis the photon-reabsorption process in the strong- coupling regime is first observed and analysed from the perspective of radiation spectrum and the optimal parameters for observing energy-entangled photon pairs are identified.
基金financially supported by the ERC Starting Grant No.715770(QD-NOMS)the National Natural Science Foundation of China(No.61728501)
文摘Semiconductor quantum dots are leading candidates for the on-demand generation of single photons and entangled photon pairs.High photon quality and indistinguishability of photons from different sources are critical for quantum information applications.The inability to grow perfectly identical quantum dots with ideal optical properties necessitates the application of post-growth tuning techniques via e.g.temperature,electric,magnetic or strain fields.In this review,we summarize the state-of-the-art and highlight the advantages of strain tunable non-classical photon sources based on epitaxial quantum dots.Using piezoelectric crystals like PMN-PT,the wavelength of single photons and entangled photon pairs emitted by InGaAs/GaAs quantum dots can be tuned reversibly.Combining with quantum light-emitting diodes simultaneously allows for electrical triggering and the tuning of wavelength or exciton fine structure.Emission from light hole exciton can be tuned,and quantum dot containing nanostructure such as nanowires have been piezo-integrated.To ensure the indistinguishability of photons from distant emitters,the wavelength drift caused by piezo creep can be compensated by frequency feedback,which is verified by two-photon interference with photons from two stabilized sources.Therefore,strain tuning proves to be a flexible and reliable tool for the development of scalable quantum dots-based non-classical photon sources.
文摘It is generally believed that nonorthogonal operations which can realize the state transformation between two nonorthogonal bases may ensure the security of many quantum communication protocols. However, in this paper, we present a powerful attack against quantum secret sharing protocols of these kinds. Applying entangled photons as fake signals, Eve can successfully steal the exact information without being revealed. We also give our effective modification to improve it. Under the suggested checking strategy, even to Eve's most general attack, it is robust and secure.
基金Supported by the National Key Basic Research and Development Programme of China under Grant No 2001CB309300, the National Natural Science Foundation of China under Grant No 10304017, NCET, and the Knowledge Innovation Project from Chinese Academy of Sciences.
文摘It is shown that the configuration of phase coding for quantum key distribution with single photon can also be used for continuous variable quantum key distribution. Therefore the robust long-distance high-speed quantum key distribution can be achieved with current technology.
文摘Bell tests with entangled light have been performed many times in many ways using linear polarizers, but the same tests have never been done with a circular polarizer. Until recently there has never been a true circular polarization beamsplitter—an optical component that separates light directly into left and right handed polarizations. Using a true circular polarization beamsplitter based on birefringent gratings, entangled light has been analyzed with unexpected results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474168 and 61401222)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20151502)+1 种基金the Qing Lan Project of Jiangsu Province,Chinaa Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘We put forward an optimal entanglement concentration protocol(ECP) for recovering an arbitrary less-entangled multi-photon Greenberger–Horne–Zeilinger(GHZ) state into the maximally entangled GHZ state based on the photonic Faraday rotation in low-quality(Q) cavity. In the ECP, only one pair of less-entangled multi-photon GHZ state and one auxiliary photon are required, and the concentration task can be realized by local operations. Moreover, our ECP can be used repeatedly to further concentrate the discarded items of conventional ECPs, which can increase its success probability largely. Under the practical imperfect detection condition, our protocol can still work with relatively high success probability. This ECP has application potential in current and future quantum communication.
基金the financial support from the National Natural Science Foundation of China(11774326)the National Key R&D Program of China(2017YFA0304301)+2 种基金Innovation Program for Quantum Science and Technology(2021ZD0300204)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)Anhui Initiative in Quantum Information Technologies。
基金supported by the National Cryptography Development Foundation of China(Grant No.MMJJ201401011)the Science and Technology Program of Guangzhou,China(Grant Nos.2013J4500095 and 2014J4100050)
文摘We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous parametric down conversion process,and then,the q-plate acts as a SAM-to-OAM transverter to transform the polarization entangled pairs into the hybrid entangled pattern,which opens the possibility to exploit the features of the higher-dimensional space of OAM state to encode information.In the manipulation and encoding process,Alice performs the SAM measurement by modulating the polarization stateπ lθx on one photon,whereas Bob modulates the OAM sector state lx' on the other photon to encode his key elements using the designed holograms which is implemented by the computer-controlled SLM.With coincidence measurement,Alice could extract the key information.It is showed that N-based keys can be encoded with each pair of entangled photon,and this scheme is robust against Eve’s individual attack.Also,the MUBs are not used.Alice and Bob do not need the classical communication for the key recovery.
基金supported by the National Natural Science Foundation of China (Grant No.11371005)Hebei Natural Science Foundation of China (Grant Nos.A2012205013 and A2014205060)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No.3142014068)
文摘In the regime of weak nonlinearity we present two general,feasible schemes for manipulating photon states.One is an entangler for generating any one of the n-photon Greenberger-Horne-Zeilinger(GHZ)states.Interactions of the incoming photons with crossKerr media followed by a phase shift gate and a measurement on a probe beam plus appropriate local operations using classical feed-forward of the measurement results allow one to obtain the desired states in a nearly deterministic manner.The second scheme discussed is an analyzer for multiphoton maximally entangled states,which is derived from the above entangler.In this scheme,all of the 2nn-photon GHZ states can,nearly deterministically,be discriminated.
基金supported by the Natural Science Foundation of China(Nos.11174224,11404246 and 11447225)the Natural Science Foundation of Shandong Province(Nos.ZR2013FM001,2013SJGZ10,BS2015DX015 and ZR2014JL029)the Science and Technology Development Program of Shandong Province(Nos.2011YD01049 and 2013YD01016)
文摘In this paper,by using the second-order parametric down-conversion of the nonlinear crystal,the spin-1 state is simulated by the two-photon polarization entangled modes. Through adjusting the laser pulse power density,the efficiency of second-order parametric down-conversion is enhanced. The intensity of the spin-1 state is 0.5/s. The fidelity of the state is up to F=0.891±0.002,and the contrast is C=17.3. The results provide a new method for Stern-Gerlach measurement on the spin-1 system.
基金supported by the National Natural Science Foundation of China under Grants Nos.61275059 and 61307062
文摘We propose schemes for the efficient information transfer between a propagating photon and a quantum-dot(QD) spin qubit in an optical microcavity that have no auxiliary particles required. With these methods, the information transfer between two photons or two QD spins can also be achieved. All of our proposals can work with high fidelity, even with a high leakage rate. What is more, each information transfer process above can also be seen as a controlled-NOT(CNOT) operation. It is found that the information transfer can be equivalent to a CNOT gate. These proposals will promote more efficient quantum information networks and quantum computation.