The molar heat capacities(C_p) of guaiacol(CAS 90-50-1) and acetyl guaiacol ester(AGE, CAS 613-70-7) were determinated from 290 K to 350 K by differential scanning calorimetry(DSC), and expressed as a function of temp...The molar heat capacities(C_p) of guaiacol(CAS 90-50-1) and acetyl guaiacol ester(AGE, CAS 613-70-7) were determinated from 290 K to 350 K by differential scanning calorimetry(DSC), and expressed as a function of temperature. Two kinds of group contribution models were used to estimate the molar heat capacities of both guaiacol and AGE, the average relative deviation is less than 10%. The standard molar enthalpies of combustion of guaiacol and AGE were- 3590.0 k J·mol^(-1)and- 4522.1 k J·mol^(-1) by a precise thermal isolation Oxygen Bomb Calorimeter. The standard molar enthalpies of formation of guaiacol and AGE in a liquid state at298.15 K were calculated to be- 307.95 k J·mol^(-1) and- 448.72 k J·mol^(-1), respectively, based on the standard molar enthalpies of combustion. The thermodynamic properties are useful for exploiting the new synthesis method, engineering design and industry production of AGE using guaiacol as a raw material.展开更多
The complexes of hydrous copper chloride and copper nitrate with 2-amino-4,6-dimethylpyrimidine(ADMP) were prepared via reflux in alcohol. The compositions of the complexes were identified as Cu(ADMP) 2Cl 2·2H 2O...The complexes of hydrous copper chloride and copper nitrate with 2-amino-4,6-dimethylpyrimidine(ADMP) were prepared via reflux in alcohol. The compositions of the complexes were identified as Cu(ADMP) 2Cl 2·2H 2O(b) and Cu(ADMP)(NO 3) 2·H 2O(c) by chemical and elemental analyses. The complexes were characterized by IR, XPS, 1H NMR and TG-DTG techniques. The constant-volume combustion energies of ADMP and the complexes, Δ c E , were determined by a precise rotating-bomb calorimeter at 298 15 K. They were (-3664 53±1 18), (-4978 47±2 72) and (-1696 70±1 36) kJ/mol, respectively. Their standard enthalpies of combustion, Δ c H 0 m, and standard enthalpies of formation, Δ f H 0 m, were calculated to be (-3666 39±1 18), (-4977 23±2 72), (-1691 12±1 36) kJ/mol and (19 09±1 43), (-2041 80±3 29), (-2397 24±1 65) kJ/mol, respectively.展开更多
A new complex, [Cd(succ)PIP], (PIP=2-phenyl-imidazo[4,5-J]l,10-phenanthroline, H2-succ=succinate), was synthesized and characterized by X-ray crystallography, elemental analysis, and TG-DTG. The results show that ...A new complex, [Cd(succ)PIP], (PIP=2-phenyl-imidazo[4,5-J]l,10-phenanthroline, H2-succ=succinate), was synthesized and characterized by X-ray crystallography, elemental analysis, and TG-DTG. The results show that the complex crystallizes in an orthorhombic space group Pcca; a=14.065(2) A, b=9.901(8) A, c=28.933(2) A and Z=8. The structure of the complex is one-dimensional chain [Cd(succ)PIP],, and each Cd2+ is five-coordinated by two chelating nitrogen atoms from one PIP ligand, three oxygen atoms from three different succ dianionic ligands to form a distorted trigonal-bipyramida geometry. The constant-volume combustion energy of the complex, AoU, was determined by an intelligent micro-rotating-bomb calorimeter (IMRBC-type I) at 298.15 K. Then the standard mo- lar enthalpy of combustion, AcHm, and the standard molar enthalpy of formation, △fHm have been calculated.展开更多
文摘The molar heat capacities(C_p) of guaiacol(CAS 90-50-1) and acetyl guaiacol ester(AGE, CAS 613-70-7) were determinated from 290 K to 350 K by differential scanning calorimetry(DSC), and expressed as a function of temperature. Two kinds of group contribution models were used to estimate the molar heat capacities of both guaiacol and AGE, the average relative deviation is less than 10%. The standard molar enthalpies of combustion of guaiacol and AGE were- 3590.0 k J·mol^(-1)and- 4522.1 k J·mol^(-1) by a precise thermal isolation Oxygen Bomb Calorimeter. The standard molar enthalpies of formation of guaiacol and AGE in a liquid state at298.15 K were calculated to be- 307.95 k J·mol^(-1) and- 448.72 k J·mol^(-1), respectively, based on the standard molar enthalpies of combustion. The thermodynamic properties are useful for exploiting the new synthesis method, engineering design and industry production of AGE using guaiacol as a raw material.
基金Supported by the Education Ministry Foundation of Shaanxi Province(No.HF0 130 4 )
文摘The complexes of hydrous copper chloride and copper nitrate with 2-amino-4,6-dimethylpyrimidine(ADMP) were prepared via reflux in alcohol. The compositions of the complexes were identified as Cu(ADMP) 2Cl 2·2H 2O(b) and Cu(ADMP)(NO 3) 2·H 2O(c) by chemical and elemental analyses. The complexes were characterized by IR, XPS, 1H NMR and TG-DTG techniques. The constant-volume combustion energies of ADMP and the complexes, Δ c E , were determined by a precise rotating-bomb calorimeter at 298 15 K. They were (-3664 53±1 18), (-4978 47±2 72) and (-1696 70±1 36) kJ/mol, respectively. Their standard enthalpies of combustion, Δ c H 0 m, and standard enthalpies of formation, Δ f H 0 m, were calculated to be (-3666 39±1 18), (-4977 23±2 72), (-1691 12±1 36) kJ/mol and (19 09±1 43), (-2041 80±3 29), (-2397 24±1 65) kJ/mol, respectively.
文摘A new complex, [Cd(succ)PIP], (PIP=2-phenyl-imidazo[4,5-J]l,10-phenanthroline, H2-succ=succinate), was synthesized and characterized by X-ray crystallography, elemental analysis, and TG-DTG. The results show that the complex crystallizes in an orthorhombic space group Pcca; a=14.065(2) A, b=9.901(8) A, c=28.933(2) A and Z=8. The structure of the complex is one-dimensional chain [Cd(succ)PIP],, and each Cd2+ is five-coordinated by two chelating nitrogen atoms from one PIP ligand, three oxygen atoms from three different succ dianionic ligands to form a distorted trigonal-bipyramida geometry. The constant-volume combustion energy of the complex, AoU, was determined by an intelligent micro-rotating-bomb calorimeter (IMRBC-type I) at 298.15 K. Then the standard mo- lar enthalpy of combustion, AcHm, and the standard molar enthalpy of formation, △fHm have been calculated.