Let f and g be two permutable transcendental entire functions. In this paper, we first prove that J(fg)=J(f n g m) for any positive integers n and m . Then we prove that the function h(p(z))+az ∈/ B , where h(z) is...Let f and g be two permutable transcendental entire functions. In this paper, we first prove that J(fg)=J(f n g m) for any positive integers n and m . Then we prove that the function h(p(z))+az ∈/ B , where h(z) is any transcendental entire function with h′(z)=0 having infinitely many solutions, p(z) is a polynomial with deg p ≥2 and a(≠0) ∈ C .展开更多
Let f be an entire function. A point Zo is called a critical point of f if f′(zo) = O, and f(zo) is called a critical value (or an algebraic singularity) of f. Next a ∈ C is said to be an asymptotic value (or...Let f be an entire function. A point Zo is called a critical point of f if f′(zo) = O, and f(zo) is called a critical value (or an algebraic singularity) of f. Next a ∈ C is said to be an asymptotic value (or a transcendental singularity) of f if there exists a curve Г : [0, 1) → C such that limt→1 F(t) = ∞ and limt→1(f o Г)(t) = a. In this paper we find relations between the asymptotic values of f, 9 and f o 9, relations between critical points of f, 9 and f o 9 and also in the case when the two functions f and 9 are semi-conjugated with another entire function.展开更多
Suppose that f and g are two transcendental entire functions, and h is a non-constant periodic entire function. We denote the Julia set and Fatou set off by J(f) and F(f), respectively, lffand g are semiconjugated...Suppose that f and g are two transcendental entire functions, and h is a non-constant periodic entire function. We denote the Julia set and Fatou set off by J(f) and F(f), respectively, lffand g are semiconjugated, that is, h · f = g · h, in this paper, we will show that z ∈ J(f) if and only if h(z) ∈ J(g) ( similarly, z F(f) if and only ifh(z) ∈ F(g)), and this extends a result of Bergweiler.展开更多
In this paper,we study the uniqueness of entire functions and prove the following theorem.Let f be a transcendental entire function of finite order.Then there exists at most one positive integer k,such that f(z)△^(k)...In this paper,we study the uniqueness of entire functions and prove the following theorem.Let f be a transcendental entire function of finite order.Then there exists at most one positive integer k,such that f(z)△^(k)_(c)f(z)-R(z)has finitely many zeros,where R(z)is a non-vanishing rational function and c is a nonzero complex number.Our result is an improvement of the theorem given by Andasmas and Latreuch[1].展开更多
We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H...We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H. Hua [3].展开更多
In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of ...In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).展开更多
This paper proves a result that if two entire functions f(z) and g(z) share four small functions aj(z) (j = 1,2,3,4) in the sense of Ek)(aj, f) = Ek)(aj,g), (j = 1,2,3,4) (k ≥ 11), then there exists f(z) = g(z).
We study the uniqueness of entire functions and prove the following theorem: Let f(z) and g(z) be two nonconstant entire functions; n and k two positive integers with n>2k+4. If the zeros of both f(z) and g(z) are ...We study the uniqueness of entire functions and prove the following theorem: Let f(z) and g(z) be two nonconstant entire functions; n and k two positive integers with n>2k+4. If the zeros of both f(z) and g(z) are of multiplicity at least n, and f (k)(z) and g (k)(z) share 1 CM, then either f(z)=c 1e cz, g(z)= c 2e -cz, where c 1, c 2 and c are three constants satisfying (-1) kc 1c 2c 2k= 1, or f(z)≡g(z).展开更多
This paper deals with problems of the uniqueness of entire functions that share one pair of values with their derivatives. The results in this paper generalize and improve a result of Jank, Mues and Volkmann, a result...This paper deals with problems of the uniqueness of entire functions that share one pair of values with their derivatives. The results in this paper generalize and improve a result of Jank, Mues and Volkmann, a result of YANG L Z and a result of R Brück.展开更多
In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth are obta...In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth are obtained in terms of approximation and interpolation errors.展开更多
Based on the work of McMullen about the continuity of Julia set for rational functions, in this paper, we discuss the continuity of Julia set and its Hausdorff dimension for a family of entire functions which satisfy ...Based on the work of McMullen about the continuity of Julia set for rational functions, in this paper, we discuss the continuity of Julia set and its Hausdorff dimension for a family of entire functions which satisfy some conditions.展开更多
In this paper,we deal with the uniqueness problems on entire functions concerning differential polynomials that share one small function.Moreover,we improve some former results of M Fang and W Lin.
The uniqueness problem of entire functions sharing one small function was studied. By Picard's Theorem, we proved that for two transcendental entire functionsf(z) and g(z), a positive integer n≥9, and a(z) (n...The uniqueness problem of entire functions sharing one small function was studied. By Picard's Theorem, we proved that for two transcendental entire functionsf(z) and g(z), a positive integer n≥9, and a(z) (not identically eaqual to zero) being a common small function related to f(z) and g(z), iffn(z)(f(z)-1)f'(z) and gn(z)(g(z)-1)g'(z) share a(z) ca, where CM is counting multiplicity, then g(z) ≡f(z). This is an extended version of Fang and Hong's theorem [ Fang ML, Hong W, A unicity theorem for entire functions concerning differential polynomials, Journal of Indian Pure Applied Mathematics, 2001, 32 (9): 1343-1348].展开更多
A uniqueness theorem for entire functions sharing one finite complex value with weight two is proved by using Nevanlinna theory , and this improves the result of Fang and Hua.
The uniqueness problem of entire functions concerning weighted sharing was discussed, and the following theorem was proved. Let f and 8 be two non-constant entire functions, m, n and k three positive integers, and n...The uniqueness problem of entire functions concerning weighted sharing was discussed, and the following theorem was proved. Let f and 8 be two non-constant entire functions, m, n and k three positive integers, and n〉2k+4. If Em(1,(f^n)^(k))= Em(1,(g^n)^(k)), then either f(z)=c1c^cz and 8(z)= c2c^cz or f=ts, where c, c1 and c2 are three constants satisfying (-1)^k(c1c2)^n(nc)^2k=], and t is a constant satisfying t^n=1. The theorem generalizes the result of Fang [Fang ML, Uniqueness and value sharing of entire functions, Computer & Mathematics with Applications, 2002, 44: 823-831].展开更多
In 1958, Baker posed the question that if f and g are two permutable transcendental entire functions, must their Julia sets be the same? In order to study this problem of permutable transcendental entire functions, by...In 1958, Baker posed the question that if f and g are two permutable transcendental entire functions, must their Julia sets be the same? In order to study this problem of permutable transcendental entire functions, by the properties of permutable transcendental entire functions, we prove that if f and g are permutable transcendental entire functions, then mes (J(f)) = mes (J(g)). Moreover, we give some results about the zero measure of the Julia sets of the permutable transcendental entire functions family.展开更多
Let f(z) be an entire function of order λ and of finite lower order μ. If the zeros of f(z) accumulate in the vicinity of a finite number of rays, then (a) λ is finite; (b) for every arbitrary number k<...Let f(z) be an entire function of order λ and of finite lower order μ. If the zeros of f(z) accumulate in the vicinity of a finite number of rays, then (a) λ is finite; (b) for every arbitrary number k<sub>1</sub>】1, there exists k<sub>2</sub>】1 such that T(k<sub>1</sub>r, f)≤k<sub>2</sub>T(r, f) for all r≥r<sub>0</sub>. Applying the above results, we prove that if f(z) is extremal for Yang’s inequality p=g/2, then (c) every deficient value of f(z) is also its asymptotic value; (d) every asymptotic value of f(z) is also its deficient value; (e) λ=μ; (f) ∑a≠∞δ5(a, f)≤1-k(μ).展开更多
We study a uniqueness question of entire functions order with their difference operators, and deal with a question in this paper extend the corresponding results obtained by Liu Examples are provided to show that the ...We study a uniqueness question of entire functions order with their difference operators, and deal with a question in this paper extend the corresponding results obtained by Liu Examples are provided to show that the results in this paper, in sharing an entire function of smaller posed by Liu and Yang. The results -Yang and by Liu-Laine respectively. a sense, are the best possible.展开更多
We give an alternative way to construct an entire function with quasiconformal surgery so that all its Fatou components are quasi-disks but the Julia set is non-locally connected.
文摘Let f and g be two permutable transcendental entire functions. In this paper, we first prove that J(fg)=J(f n g m) for any positive integers n and m . Then we prove that the function h(p(z))+az ∈/ B , where h(z) is any transcendental entire function with h′(z)=0 having infinitely many solutions, p(z) is a polynomial with deg p ≥2 and a(≠0) ∈ C .
基金This paper is a main talk on the held in Nanjing, P. R. China, July, 2004.
文摘Let f be an entire function. A point Zo is called a critical point of f if f′(zo) = O, and f(zo) is called a critical value (or an algebraic singularity) of f. Next a ∈ C is said to be an asymptotic value (or a transcendental singularity) of f if there exists a curve Г : [0, 1) → C such that limt→1 F(t) = ∞ and limt→1(f o Г)(t) = a. In this paper we find relations between the asymptotic values of f, 9 and f o 9, relations between critical points of f, 9 and f o 9 and also in the case when the two functions f and 9 are semi-conjugated with another entire function.
文摘Suppose that f and g are two transcendental entire functions, and h is a non-constant periodic entire function. We denote the Julia set and Fatou set off by J(f) and F(f), respectively, lffand g are semiconjugated, that is, h · f = g · h, in this paper, we will show that z ∈ J(f) if and only if h(z) ∈ J(g) ( similarly, z F(f) if and only ifh(z) ∈ F(g)), and this extends a result of Bergweiler.
基金Supported by National Natural Science Foundation of China(Grant No.11701188).
文摘In this paper,we study the uniqueness of entire functions and prove the following theorem.Let f be a transcendental entire function of finite order.Then there exists at most one positive integer k,such that f(z)△^(k)_(c)f(z)-R(z)has finitely many zeros,where R(z)is a non-vanishing rational function and c is a nonzero complex number.Our result is an improvement of the theorem given by Andasmas and Latreuch[1].
基金supported by NSF of Fujian Province,China(S0750013),supported by NSF of Fujian Province,China(2008J0190)the Research Foundation of Ningde Normal University(2008J001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H. Hua [3].
基金supported by the Natural Science Foundation of Guangdong Province in China(2014A030313422,2016A030310106,2016A030313745)
文摘In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).
文摘This paper proves a result that if two entire functions f(z) and g(z) share four small functions aj(z) (j = 1,2,3,4) in the sense of Ek)(aj, f) = Ek)(aj,g), (j = 1,2,3,4) (k ≥ 11), then there exists f(z) = g(z).
文摘We study the uniqueness of entire functions and prove the following theorem: Let f(z) and g(z) be two nonconstant entire functions; n and k two positive integers with n>2k+4. If the zeros of both f(z) and g(z) are of multiplicity at least n, and f (k)(z) and g (k)(z) share 1 CM, then either f(z)=c 1e cz, g(z)= c 2e -cz, where c 1, c 2 and c are three constants satisfying (-1) kc 1c 2c 2k= 1, or f(z)≡g(z).
文摘This paper deals with problems of the uniqueness of entire functions that share one pair of values with their derivatives. The results in this paper generalize and improve a result of Jank, Mues and Volkmann, a result of YANG L Z and a result of R Brück.
文摘In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth are obtained in terms of approximation and interpolation errors.
基金Supported by National Natural Science Foundation of China(1080113410625107)
文摘Based on the work of McMullen about the continuity of Julia set for rational functions, in this paper, we discuss the continuity of Julia set and its Hausdorff dimension for a family of entire functions which satisfy some conditions.
文摘In this paper,we deal with the uniqueness problems on entire functions concerning differential polynomials that share one small function.Moreover,we improve some former results of M Fang and W Lin.
基金Funded by The National Natural Science Foundation of China under Grant No. 10671067.
文摘The uniqueness problem of entire functions sharing one small function was studied. By Picard's Theorem, we proved that for two transcendental entire functionsf(z) and g(z), a positive integer n≥9, and a(z) (not identically eaqual to zero) being a common small function related to f(z) and g(z), iffn(z)(f(z)-1)f'(z) and gn(z)(g(z)-1)g'(z) share a(z) ca, where CM is counting multiplicity, then g(z) ≡f(z). This is an extended version of Fang and Hong's theorem [ Fang ML, Hong W, A unicity theorem for entire functions concerning differential polynomials, Journal of Indian Pure Applied Mathematics, 2001, 32 (9): 1343-1348].
文摘A uniqueness theorem for entire functions sharing one finite complex value with weight two is proved by using Nevanlinna theory , and this improves the result of Fang and Hua.
文摘The uniqueness problem of entire functions concerning weighted sharing was discussed, and the following theorem was proved. Let f and 8 be two non-constant entire functions, m, n and k three positive integers, and n〉2k+4. If Em(1,(f^n)^(k))= Em(1,(g^n)^(k)), then either f(z)=c1c^cz and 8(z)= c2c^cz or f=ts, where c, c1 and c2 are three constants satisfying (-1)^k(c1c2)^n(nc)^2k=], and t is a constant satisfying t^n=1. The theorem generalizes the result of Fang [Fang ML, Uniqueness and value sharing of entire functions, Computer & Mathematics with Applications, 2002, 44: 823-831].
文摘In 1958, Baker posed the question that if f and g are two permutable transcendental entire functions, must their Julia sets be the same? In order to study this problem of permutable transcendental entire functions, by the properties of permutable transcendental entire functions, we prove that if f and g are permutable transcendental entire functions, then mes (J(f)) = mes (J(g)). Moreover, we give some results about the zero measure of the Julia sets of the permutable transcendental entire functions family.
文摘Let f(z) be an entire function of order λ and of finite lower order μ. If the zeros of f(z) accumulate in the vicinity of a finite number of rays, then (a) λ is finite; (b) for every arbitrary number k<sub>1</sub>】1, there exists k<sub>2</sub>】1 such that T(k<sub>1</sub>r, f)≤k<sub>2</sub>T(r, f) for all r≥r<sub>0</sub>. Applying the above results, we prove that if f(z) is extremal for Yang’s inequality p=g/2, then (c) every deficient value of f(z) is also its asymptotic value; (d) every asymptotic value of f(z) is also its deficient value; (e) λ=μ; (f) ∑a≠∞δ5(a, f)≤1-k(μ).
基金Supported by National Natural Science Foundation of China(Grant No.11171184)the Natural Science Foundation of Shandong Province,China(Grant No.Z2008A01)
文摘We study a uniqueness question of entire functions order with their difference operators, and deal with a question in this paper extend the corresponding results obtained by Liu Examples are provided to show that the results in this paper, in sharing an entire function of smaller posed by Liu and Yang. The results -Yang and by Liu-Laine respectively. a sense, are the best possible.
基金supported by National Natural Science Foundation of China (Grant Nos. 11171144 and 11325104)
文摘We give an alternative way to construct an entire function with quasiconformal surgery so that all its Fatou components are quasi-disks but the Julia set is non-locally connected.