NATO standards"AEP-2920 Procedures for the Evaluation and Classification of Personal Armor"and NIJ Standard-0101.06,indicate the method to statistically assess the resistance of personal ballistic protection...NATO standards"AEP-2920 Procedures for the Evaluation and Classification of Personal Armor"and NIJ Standard-0101.06,indicate the method to statistically assess the resistance of personal ballistic protection materials.To be validated and accepted through these procedures,a personal ballistic protection material should withstand an impact of a specific projectile with a probability of a partial penetration confidence level higher than 90%.The present study introduces an energy equilibrium method to assess the confidence level for the probability of partial penetration of ductile and brittle materials.The experiments performed in the Ballistics laboratory of the Royal Military Academy in Belgium,use a modified pendulum method that allowed the quantification of the energy balance before and after the ballistic impact.The results were then compared with the ones obtained using the method specified by the NATO standard and NIJ 0101.06,mentioned above.The outcome of this comparison shows the tendency of the values obtained by the pendulum method to faithfully follow the values obtained according to NATO and NIJ specifications.The presented method is not based on statistical estimations,but instead,an exact method,of computing the energy absorbed by the tested material.This is an advantage for the cases when the material to be evaluated is expensive or it is in the development phase and mass production is not possible.展开更多
The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of ca...The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of calculation.Especially in the process of optimization calculation and parameter identification,the ablation model needs to be called many times,so it is necessary to construct an ablation surrogate model to improve the computational efficiency under the premise of ensuring the accuracy.In this paper,the Gaussian process model method is used to construct a thermal protection material ablation surrogate model,and the prediction accuracy of the surrogate model is improved through optimization.展开更多
With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to r...With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs.展开更多
The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hyperso...The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hypersonic vehicles. It is our great pleasure to present the seven papers in this special subject of Theoretical & Applied Mechanics Letters (TAML) and introduce the recent progresses on the mechanical behavior of thermal protection materials and structures by the authors.展开更多
In order to effectively solve the problem of copyright protection of materials genome engineering data,this paper proposes a method for copyright protection of materials genome engineering data based on zero-watermark...In order to effectively solve the problem of copyright protection of materials genome engineering data,this paper proposes a method for copyright protection of materials genome engineering data based on zero-watermarking technology.First,the important attribute values are selected from the materials genome engineering database;then,use the method of remainder to group the selected attribute values and extract eigenvalues;then,the eigenvalues sequence is obtained by the majority election method;finally,XOR the sequence with the actual copyright information to obtain the watermarking information and store it in the third-party authentication center.When a copyright dispute requires copyright authentication for the database to be detected.First,the zero-watermarking construction algorithm is used to obtain an eigenvalues sequence;then,this sequence is XORed with the watermarking information stored in the third-party authentication center to obtain copyright information to-be-detected.Finally,the ownership is determined by calculating the similarity between copyright information to-be-detected and copyright information that has practical significance.The experimental result shows that the zero-watermarking method proposed in this paper can effectively resist various common attacks,and can well achieve the copyright protection of material genome engineering database.展开更多
Hybrid nanoSiO_(2) (HNS) modified cement pastes were explored as a kind of surface protection material (SPM).The carbonation resistance and mechanical properties of SPMs coated samples were tested.Thermogravimetric an...Hybrid nanoSiO_(2) (HNS) modified cement pastes were explored as a kind of surface protection material (SPM).The carbonation resistance and mechanical properties of SPMs coated samples were tested.Thermogravimetric analysis (TGA),X-ray diffraction (XRD),scanning electron microscope (SEM),and mercury intrusion porosimetry (MIP) were further employed to evaluate the chemical composition and microstructure characteristics of SPM.Besides,thermodynamic modeling was adopted to simulate the changes in the phase assemblages of SPM under the carbonation process.The results showed that SPM with 1 wt% HNS could effectively enhance the carbonation resistance.The incorporation of HNS could densify the microstructure and refine the pore structure.Moreover,the thaumasite can be stable at ambient temperature with the addition of HNS,which is beneficial to maintain alkalinity under the carbonation process.展开更多
Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often a...Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices.展开更多
In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance require...In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures.展开更多
Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) o...Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance.展开更多
This work focuses on the design of a new type of eco-material based on Typha“Domingensis”and clay from the south of the Republic of Benin through various dosages.Three particle size classes of typha shavings were se...This work focuses on the design of a new type of eco-material based on Typha“Domingensis”and clay from the south of the Republic of Benin through various dosages.Three particle size classes of typha shavings were selected to be mixed with two types of clayin order to make parallelepiped shaped samples ready for experimentation.The massive use of these briquettes thus obtained,in the construction of habitats,would not only contribute to reducing the energy consumption inside the dwellings but also would limit the invasion of the waterways of Benin,which would facilitate navigation,fishing and river sanitation activities.In addition,this biosourced,low-polluting material would contribute to improving the energy transition by integrating it into rehabilitation of buildings.展开更多
The use of raw clay in housing construction dates back from ancient times and is still living on. Traditional habitat comprising various buildings all over different places of our planet, give evidence. Among any othe...The use of raw clay in housing construction dates back from ancient times and is still living on. Traditional habitat comprising various buildings all over different places of our planet, give evidence. Among any other pathologies affecting naked earthen walls, the rain water wash remains a major concern and deserves careful consideration. Which justifies the interest of this research focused on the protection means of such types of walls. This article relates the experiment conducted on low walls made out of raw clay mixed with composite protecting products (traditional and modern ones as well), being tested to intensive water floods. The result of the tests assessed through efficiency of the protecting materials, shows that the locust bean tree (local tree) fruit husk extract added to raw clay mortar and carefully blended seems to provide better ability to protect walls against water assault. Moreover, consistency check and plasticity reveal better performance in clay material properties.展开更多
The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architec...The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architecture of composites of Al/Pb type made by consecutive application of vacuum and normal atmospheric rolling are adduced. The differences between the radioisotope and accelerating techniques of experimental testing of radiation-protective properties of materials are described. The results of the testing of composites and the influence of their structure on radiation-protective properties of the investigated materials are characterized. It is shown that the radiation-protective efficiency of composites certain structures may be 30% - 40% higher than the aluminum. This gives the opportunity to reduce the weight of radiation-protective structure at preservation of effectiveness of protection at aluminum level, or to increase the effectiveness of protection at constant weight of this structure.展开更多
Galvanic, compatibility between graphite epoxy composite materials (GECM) and LY12CZ aluminum alloy was evaluated in different atmospheric corrosion environments and by laboratory electrochemical measurements. Open ci...Galvanic, compatibility between graphite epoxy composite materials (GECM) and LY12CZ aluminum alloy was evaluated in different atmospheric corrosion environments and by laboratory electrochemical measurements. Open circuit potential electrochemical measurements showed a relatively large potential difference about 1 volt between the GECM and LY12CZ aluminum alloy, and this difference provided the driving force for galvanic corrosion of the LY12CZ aluminum alloy as an anode. Having been exposed for 1, 3 or 5 years in Beijing, Tuandao and Wanning station, GECM/LY12CZ couples showed significant losses of strength and elongation. Protective coatings and non-conductive barriers breaking the galvanic corrosion circuit were evaluated under the same atmospheric corrosive conditions. Epoxy primer paint, glass cloth barriers and LY12CZ anodizing were effective in galvanic corrosion control for GECM/LY12CZ couples.展开更多
The article presents problems related to mechanical protection of vehicles with different add-on armours against chemical,biological and radiological contamination.This applies to vehicles with additional passive,reac...The article presents problems related to mechanical protection of vehicles with different add-on armours against chemical,biological and radiological contamination.This applies to vehicles with additional passive,reactive and hybrid protection in the form of cassettes against piercing with anti-tank projectiles,piercing with their kinetic energy of impact,and as a result of chemical energy of shaped charges as well as explosively formed projectiles.It has been shown how increased ballistic protection of these vehicles at the same time reduces their decontaminability in various places of the vehicle due to the increased additional surface of the vehicle with cassettes.Prevention of contamination of these cassettes has been presented as a way of reducing hard to reach surface for decontamination and a method of insulating construction elements(stands),fixing these cassettes to the vehicle,from the environment to prevent contact with contaminated liquids and dusts.The selection of appropriate materials is shown,which may affect the improvement of the decontamination efficiency of the vehicle with such cassettes.This applies to the use of materials with low absorption of chemical warfare agents,which prevent the accumulation of large amounts of these agents on contaminated surfaces and improve the effectiveness of decontamination.It also shows how to ensure better access of the disinfectant to as much of the vehicle surface as possible,covered with cassettes that have been contaminated.It shows how a vehicle,in particular with such cassettes,can provide protection against radar detection when Radar Absorbent Material is used on vehicle cassettes.展开更多
Stainless steels such as STS 304,316 and 630 are frequently used as shaft materials in small fiber reinforced polymer(FRP) fishing boats.If the shaft material is exposed to a severely corrosive environment such as sea...Stainless steels such as STS 304,316 and 630 are frequently used as shaft materials in small fiber reinforced polymer(FRP) fishing boats.If the shaft material is exposed to a severely corrosive environment such as seawater,it should be protected using appropriate methods.The impressed current cathodic protection was used to inhibit corrosion in shaft materials.In anodic polarization,passivity was remarkably more evident in STS 316 stainless steel than in STS 304 and STS 630.The pitting potentials of STS 304,316,and 630 stainless steels were 0.30,0.323,and 0.260 V,respectively.The concentration polarization due to oxygen reduction and activation polarization due to hydrogen generation were evident in the cathodic polarization trends of all three stainless steeds.STS 316 had the lowest current densities in all potential ranges,and STS 630 had the highest.Tafel analysis showed that STS 316 was the most noble in the three.In addition,the corrosion current density was the lowest for STS 316.展开更多
Aiming at the harmfulness of and protection from ionizing radiation, this paper will centre on the design and synthesis technology of a new type of polymeric material which is stable at the ionizing radiation from 10-...Aiming at the harmfulness of and protection from ionizing radiation, this paper will centre on the design and synthesis technology of a new type of polymeric material which is stable at the ionizing radiation from 10-11 to 10-8 meter wave. The material is made up of epoxy resin 6101, curing agent phenolic-aniline resin, which is developed by the authors, and other auxilliary agents. This material is stable at the radiation of 107Gy,and its physical and chemical properties are excellent.展开更多
Supercritical water reactor(SCWR) was proposed as a GenerationⅣconcept for building large capacity nuclear power plants.Comparing with the present GenerationⅡandⅢlight water reactors,SCWR possesses great advantages...Supercritical water reactor(SCWR) was proposed as a GenerationⅣconcept for building large capacity nuclear power plants.Comparing with the present GenerationⅡandⅢlight water reactors,SCWR possesses great advantages of 10%higher efficiency,simpler system design,better sustainability,and so on. However,the selection of materials for fuel cladding and reactor internals of SCWR is facing a great challenge. Corrosion in supercritical steam is of the first important issue to be solved to meet the stringent requirement of the reactor internal components.Corrosion screening tests were conducted on candidate materials for nuclear fuel cladding and reactor internals of supercritical water reactor(SCWR) in static and re-circulating autoclave at the temperatures of 550,600 and 650℃,pressure of about 25 MPa,deaerated or saturated dissolved hydrogen(STP). Nickel base alloy type Hastelloy C276,austenitic stainless steels type 304NG,AL-6XN,HR3C.NF709 and SAVE 25,ferritic/martensitic(F/M) steel type P92,P122 and 410,and oxide dispersion strengthened steel MA 956,are tested.This paper presents corrosion rate,and focuses on the formation and breakdown of corrosion oxide film,and proposes the future trend for the development of SCWR internal structure materials.展开更多
With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce ...With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce casualties and maintain military combat effectiveness,is widely developed.This paper systematically reviewed various PPE based on individual combat through literature research and comprehensive discussion,and introduced in detail the latest application progress of PPE in terms of material and technology from three aspects:individual integrated protection system,traditional protection equipment,and intelligent protection equipment,respectively,and discussed in depth the functional improvement and optimization status brought by advanced technology for PPE,focusing on the achievements of individual equipment technology application.Finally,the problems and technical bottlenecks in the development of PPE were analyzed and summarized,and the development trend of PPE were pointed out.The results of the review will provide a forward-looking reference for the current development of individual PPE,and are important guidance for the design and technological innovation of advanced equipment based on the future technological battlefield.展开更多
The demand for PTC material for overcurrent protection application in automobile motors has been remarkably increasing. To meet the safety and reliability requirements in automobile system and communication equipment,...The demand for PTC material for overcurrent protection application in automobile motors has been remarkably increasing. To meet the safety and reliability requirements in automobile system and communication equipment, it is necessary to prepare PTC material with low resistivity and high performance. In this paper, the preparation and the properties of PTC material with a resistivity of approximately 12Ω. cm, especially its overcurrent protection are described.展开更多
This paper gives analysis of application status and prospect of plastic materials from the aspects of applied material amount comparison,development of new materials & new technologies,lightweight,design conceptio...This paper gives analysis of application status and prospect of plastic materials from the aspects of applied material amount comparison,development of new materials & new technologies,lightweight,design conception of new components,recyclability,simplification and diversity of materials,standardization of material specification and presents corresponding conclusions and suggestions.展开更多
文摘NATO standards"AEP-2920 Procedures for the Evaluation and Classification of Personal Armor"and NIJ Standard-0101.06,indicate the method to statistically assess the resistance of personal ballistic protection materials.To be validated and accepted through these procedures,a personal ballistic protection material should withstand an impact of a specific projectile with a probability of a partial penetration confidence level higher than 90%.The present study introduces an energy equilibrium method to assess the confidence level for the probability of partial penetration of ductile and brittle materials.The experiments performed in the Ballistics laboratory of the Royal Military Academy in Belgium,use a modified pendulum method that allowed the quantification of the energy balance before and after the ballistic impact.The results were then compared with the ones obtained using the method specified by the NATO standard and NIJ 0101.06,mentioned above.The outcome of this comparison shows the tendency of the values obtained by the pendulum method to faithfully follow the values obtained according to NATO and NIJ specifications.The presented method is not based on statistical estimations,but instead,an exact method,of computing the energy absorbed by the tested material.This is an advantage for the cases when the material to be evaluated is expensive or it is in the development phase and mass production is not possible.
基金supported by Independent Research and Development Project of CASC(YF-ZZYF-2022-132)。
文摘The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of calculation.Especially in the process of optimization calculation and parameter identification,the ablation model needs to be called many times,so it is necessary to construct an ablation surrogate model to improve the computational efficiency under the premise of ensuring the accuracy.In this paper,the Gaussian process model method is used to construct a thermal protection material ablation surrogate model,and the prediction accuracy of the surrogate model is improved through optimization.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51991361)the foundation of China University of Petroleum(Beijing)(Grant No.2462021YXZZ002).
文摘With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs.
基金support from the Natural Science Foundation of China(91016029,91216302,and 91216301)
文摘The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hypersonic vehicles. It is our great pleasure to present the seven papers in this special subject of Theoretical & Applied Mechanics Letters (TAML) and introduce the recent progresses on the mechanical behavior of thermal protection materials and structures by the authors.
基金This work is supported by Foundation of Beijing Key Laboratory of Internet Culture and Digital Dissemination Research No.ICDDXN004Foundation of Beijing Advanced Innovation Center for Materials Genome Engineering.
文摘In order to effectively solve the problem of copyright protection of materials genome engineering data,this paper proposes a method for copyright protection of materials genome engineering data based on zero-watermarking technology.First,the important attribute values are selected from the materials genome engineering database;then,use the method of remainder to group the selected attribute values and extract eigenvalues;then,the eigenvalues sequence is obtained by the majority election method;finally,XOR the sequence with the actual copyright information to obtain the watermarking information and store it in the third-party authentication center.When a copyright dispute requires copyright authentication for the database to be detected.First,the zero-watermarking construction algorithm is used to obtain an eigenvalues sequence;then,this sequence is XORed with the watermarking information stored in the third-party authentication center to obtain copyright information to-be-detected.Finally,the ownership is determined by calculating the similarity between copyright information to-be-detected and copyright information that has practical significance.The experimental result shows that the zero-watermarking method proposed in this paper can effectively resist various common attacks,and can well achieve the copyright protection of material genome engineering database.
基金Funded by the National Natural Science Foundation of China (Nos.51808188, 52178202, 52108206)the Fundamental Research Funds for the Central Universities (No.B210201041)。
文摘Hybrid nanoSiO_(2) (HNS) modified cement pastes were explored as a kind of surface protection material (SPM).The carbonation resistance and mechanical properties of SPMs coated samples were tested.Thermogravimetric analysis (TGA),X-ray diffraction (XRD),scanning electron microscope (SEM),and mercury intrusion porosimetry (MIP) were further employed to evaluate the chemical composition and microstructure characteristics of SPM.Besides,thermodynamic modeling was adopted to simulate the changes in the phase assemblages of SPM under the carbonation process.The results showed that SPM with 1 wt% HNS could effectively enhance the carbonation resistance.The incorporation of HNS could densify the microstructure and refine the pore structure.Moreover,the thaumasite can be stable at ambient temperature with the addition of HNS,which is beneficial to maintain alkalinity under the carbonation process.
基金the financial support from the National Key Research and Development Program of China(No.2021YFF0500802)the National Natural Science Foundation of China(No.51890904,No.52022022,and No.52278247)the Scientific Research and Innovation Plan of Jiangsu Province(KYCX21_0090)。
文摘Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices.
基金supported by the National Natural Science Foundation of China(Grants No.51109143 and 51209144)the Natural Science Foundation of Jiangsu Province(Grant No.BK2011109)the Foundation of Nanjing Hydraulic Research Institute(Grant No.Y113004)
文摘In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures.
基金Fundamental Research Funds for the Central Universities,China(No.14D110715/17/18)Start up Fund by Shanghai University of Engineering Science(No.2015-69)Young Teacher Training Program by Shanghai,China(No.ZZGCD15051))
文摘Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance.
文摘This work focuses on the design of a new type of eco-material based on Typha“Domingensis”and clay from the south of the Republic of Benin through various dosages.Three particle size classes of typha shavings were selected to be mixed with two types of clayin order to make parallelepiped shaped samples ready for experimentation.The massive use of these briquettes thus obtained,in the construction of habitats,would not only contribute to reducing the energy consumption inside the dwellings but also would limit the invasion of the waterways of Benin,which would facilitate navigation,fishing and river sanitation activities.In addition,this biosourced,low-polluting material would contribute to improving the energy transition by integrating it into rehabilitation of buildings.
文摘The use of raw clay in housing construction dates back from ancient times and is still living on. Traditional habitat comprising various buildings all over different places of our planet, give evidence. Among any other pathologies affecting naked earthen walls, the rain water wash remains a major concern and deserves careful consideration. Which justifies the interest of this research focused on the protection means of such types of walls. This article relates the experiment conducted on low walls made out of raw clay mixed with composite protecting products (traditional and modern ones as well), being tested to intensive water floods. The result of the tests assessed through efficiency of the protecting materials, shows that the locust bean tree (local tree) fruit husk extract added to raw clay mortar and carefully blended seems to provide better ability to protect walls against water assault. Moreover, consistency check and plasticity reveal better performance in clay material properties.
文摘The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architecture of composites of Al/Pb type made by consecutive application of vacuum and normal atmospheric rolling are adduced. The differences between the radioisotope and accelerating techniques of experimental testing of radiation-protective properties of materials are described. The results of the testing of composites and the influence of their structure on radiation-protective properties of the investigated materials are characterized. It is shown that the radiation-protective efficiency of composites certain structures may be 30% - 40% higher than the aluminum. This gives the opportunity to reduce the weight of radiation-protective structure at preservation of effectiveness of protection at aluminum level, or to increase the effectiveness of protection at constant weight of this structure.
基金The authors gratefully acknowledge the financial support from National Key Basic Research and Development Programme of China (No. G1999065004).
文摘Galvanic, compatibility between graphite epoxy composite materials (GECM) and LY12CZ aluminum alloy was evaluated in different atmospheric corrosion environments and by laboratory electrochemical measurements. Open circuit potential electrochemical measurements showed a relatively large potential difference about 1 volt between the GECM and LY12CZ aluminum alloy, and this difference provided the driving force for galvanic corrosion of the LY12CZ aluminum alloy as an anode. Having been exposed for 1, 3 or 5 years in Beijing, Tuandao and Wanning station, GECM/LY12CZ couples showed significant losses of strength and elongation. Protective coatings and non-conductive barriers breaking the galvanic corrosion circuit were evaluated under the same atmospheric corrosive conditions. Epoxy primer paint, glass cloth barriers and LY12CZ anodizing were effective in galvanic corrosion control for GECM/LY12CZ couples.
文摘The article presents problems related to mechanical protection of vehicles with different add-on armours against chemical,biological and radiological contamination.This applies to vehicles with additional passive,reactive and hybrid protection in the form of cassettes against piercing with anti-tank projectiles,piercing with their kinetic energy of impact,and as a result of chemical energy of shaped charges as well as explosively formed projectiles.It has been shown how increased ballistic protection of these vehicles at the same time reduces their decontaminability in various places of the vehicle due to the increased additional surface of the vehicle with cassettes.Prevention of contamination of these cassettes has been presented as a way of reducing hard to reach surface for decontamination and a method of insulating construction elements(stands),fixing these cassettes to the vehicle,from the environment to prevent contact with contaminated liquids and dusts.The selection of appropriate materials is shown,which may affect the improvement of the decontamination efficiency of the vehicle with such cassettes.This applies to the use of materials with low absorption of chemical warfare agents,which prevent the accumulation of large amounts of these agents on contaminated surfaces and improve the effectiveness of decontamination.It also shows how to ensure better access of the disinfectant to as much of the vehicle surface as possible,covered with cassettes that have been contaminated.It shows how a vehicle,in particular with such cassettes,can provide protection against radar detection when Radar Absorbent Material is used on vehicle cassettes.
文摘Stainless steels such as STS 304,316 and 630 are frequently used as shaft materials in small fiber reinforced polymer(FRP) fishing boats.If the shaft material is exposed to a severely corrosive environment such as seawater,it should be protected using appropriate methods.The impressed current cathodic protection was used to inhibit corrosion in shaft materials.In anodic polarization,passivity was remarkably more evident in STS 316 stainless steel than in STS 304 and STS 630.The pitting potentials of STS 304,316,and 630 stainless steels were 0.30,0.323,and 0.260 V,respectively.The concentration polarization due to oxygen reduction and activation polarization due to hydrogen generation were evident in the cathodic polarization trends of all three stainless steeds.STS 316 had the lowest current densities in all potential ranges,and STS 630 had the highest.Tafel analysis showed that STS 316 was the most noble in the three.In addition,the corrosion current density was the lowest for STS 316.
文摘Aiming at the harmfulness of and protection from ionizing radiation, this paper will centre on the design and synthesis technology of a new type of polymeric material which is stable at the ionizing radiation from 10-11 to 10-8 meter wave. The material is made up of epoxy resin 6101, curing agent phenolic-aniline resin, which is developed by the authors, and other auxilliary agents. This material is stable at the radiation of 107Gy,and its physical and chemical properties are excellent.
文摘Supercritical water reactor(SCWR) was proposed as a GenerationⅣconcept for building large capacity nuclear power plants.Comparing with the present GenerationⅡandⅢlight water reactors,SCWR possesses great advantages of 10%higher efficiency,simpler system design,better sustainability,and so on. However,the selection of materials for fuel cladding and reactor internals of SCWR is facing a great challenge. Corrosion in supercritical steam is of the first important issue to be solved to meet the stringent requirement of the reactor internal components.Corrosion screening tests were conducted on candidate materials for nuclear fuel cladding and reactor internals of supercritical water reactor(SCWR) in static and re-circulating autoclave at the temperatures of 550,600 and 650℃,pressure of about 25 MPa,deaerated or saturated dissolved hydrogen(STP). Nickel base alloy type Hastelloy C276,austenitic stainless steels type 304NG,AL-6XN,HR3C.NF709 and SAVE 25,ferritic/martensitic(F/M) steel type P92,P122 and 410,and oxide dispersion strengthened steel MA 956,are tested.This paper presents corrosion rate,and focuses on the formation and breakdown of corrosion oxide film,and proposes the future trend for the development of SCWR internal structure materials.
基金supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Projects No.52202012)the National Natural Science Foundation of China(Projects No.51834007)。
文摘With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce casualties and maintain military combat effectiveness,is widely developed.This paper systematically reviewed various PPE based on individual combat through literature research and comprehensive discussion,and introduced in detail the latest application progress of PPE in terms of material and technology from three aspects:individual integrated protection system,traditional protection equipment,and intelligent protection equipment,respectively,and discussed in depth the functional improvement and optimization status brought by advanced technology for PPE,focusing on the achievements of individual equipment technology application.Finally,the problems and technical bottlenecks in the development of PPE were analyzed and summarized,and the development trend of PPE were pointed out.The results of the review will provide a forward-looking reference for the current development of individual PPE,and are important guidance for the design and technological innovation of advanced equipment based on the future technological battlefield.
基金Supported by a major project of the 8th Five-Year Plan of China.
文摘The demand for PTC material for overcurrent protection application in automobile motors has been remarkably increasing. To meet the safety and reliability requirements in automobile system and communication equipment, it is necessary to prepare PTC material with low resistivity and high performance. In this paper, the preparation and the properties of PTC material with a resistivity of approximately 12Ω. cm, especially its overcurrent protection are described.
基金"Twelfth Five-year Plan"for Sci & Tech Research of China(No.2011BAG03B02No.2011BAG03B06)
文摘This paper gives analysis of application status and prospect of plastic materials from the aspects of applied material amount comparison,development of new materials & new technologies,lightweight,design conception of new components,recyclability,simplification and diversity of materials,standardization of material specification and presents corresponding conclusions and suggestions.