To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals l...To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals like Cd and Pb in solid waste in mining areas and across the water body,sediment,soil and agricultural product ecosystem surrounding the mining areas.Focusing on the residual solid waste samples in lead-zinc deposits in a certain area of Guizhou Province,along with samples of topsoils,irrigation water,river sediments,and crops from surrounding areas.This study analyzed the distributions of eight heavy metals,i.e.,Cd,As,Cr,Hg,Pb,Zn,Cu,and Ni,in the samples through field surveys and sample tests.Furthermore,this study assessed the contamination levels and ecological risks of heavy metals in soils,sediments,and agricultural products using methods such as the single-factor index,Nemerow composite index,and potential ecological risk assessment.The results indicate that heavy metals in the solid waste samples all exhibited concentrations exceeding their risk screening values,with 60%greater than their risk intervention values.The soils and sediments demonstrate slight and moderate comprehensive ecological risks of heavy metals.The single-factor potential ecological risks of heavy metals in both the soil and sediment samples decreased in the order of Hg,Cd,Pb,As,Cu,Zn,Cr,and Ni,suggesting the same sources of heavy metals in the soils and sediments.Most of the agricultural product samples exhibited over-limit concentrations of heavy metals dominated by Cd,Pb,Ni,and Cr,excluding Hg and As.The agricultural product assessment using the Nemerow composite index reveals that 35%of the agricultural product samples reached the heavy metal contamination level,implying that the agricultural products from farmland around the solid waste dumps have been contaminated with heavy metals.The eight heavy metals in the soil,sediment,and agricultural product samples manifested high coefficients of variation(CVs),indicating pronounced spatial variability.This suggests that their concentrations in soils,sediments,and agricultural products are significantly influenced by human mining activities.Additionally,the agricultural products exhibit strong transport and accumulation capacities for Cd,Cu,and Zn.展开更多
Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and wa...Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.展开更多
[Objective] The aim was to evaluate heavy metal environmental quality of irrigation water in vegetable farmlands of Shandong Province. [Method] Heavy metal contents including Hg,Cd,As,Cr (+6),Pb,Cu and Zn in irrigatio...[Objective] The aim was to evaluate heavy metal environmental quality of irrigation water in vegetable farmlands of Shandong Province. [Method] Heavy metal contents including Hg,Cd,As,Cr (+6),Pb,Cu and Zn in irrigation water of main vegetable farmlands of Shandong Province were investigated by randomly sampling,and the environmental quality conditions of these heavy metals were evaluated by methods of single quality index and complex quality index. [Result] The results showed that the average contents of heavy metals in irrigation water of Shouguang,Laiyang,Jinxiang and Zhangqiu were all far lower than the limit values prescribed by 'Farmland Environmental Quality Evaluation Standards for Edible Agricultural Products' (HJ332-2006),and no heavy metal was found beyond the limit value in every sample. The single quality indices of the 7 elements in the studied 4 places were all lower than 0.5. The comprehensive quality index of the seven elements was 0.317 8 in Shouguang,0.320 4 in Laiyang,0.232 6 in Jinxiang,and 0.260 7 in Zhangqiu. The environmental quality of irrigation water in the studied four places were all set at the first class. [Conclusion] The environmental quality of irrigation water in the 4 places belonged to clean level and were fit for the plantation of no pollution vegetables.展开更多
[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advan...[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.展开更多
Heavy metal concentrations in agricultural soils of Zhejiang Province were monitored to indicate the status of heavy metal contamination and assess environmental quality of agricultural soils. A total of 908 soil samp...Heavy metal concentrations in agricultural soils of Zhejiang Province were monitored to indicate the status of heavy metal contamination and assess environmental quality of agricultural soils. A total of 908 soil samples were collected from 38 counties in Zbejiang Province and eight heavy metal (Cd, Cr, Pb, Hg, Cu, Zn, Ni and As) concentrations had been evaluated in agricultural soil. It was found 775 samples were unpolluted and 133 samples were slightly polluted and more respectively, that is approximately 14.65% agricultural soil samples had the heavy metal concentration above the threshold level in this province by means of Nemerow's synthetical pollution index method according to the second grade of Standards for Soil Environmental Quality of China (GB15618- 1995). Contamination of Cd was the highest, followed by Ni, As and Zn were lower correspondingly. Moreover, Inverse Distance Weighted (IDW) interpolation method was used to make an assessment map of soil environmental quality based on the Nemerow's pollution index and the soil environmental quality was categorized into five grades. Moreover, ten indices were calculated as input parameters for principal component analysis (PCA) and the principal components (PCs) were created to compare environmental quality of different soils and regions. The results revealed that environmental quality of tea soils was better than that of paddy soils, vegetable soils and fruit soils. This study indicated that GIS combined with multivariate statistical approaches proved to be effective and powerful tool in the mapping of soil contamination distribution and the assessment of soil environmental quality on provincial scale, which is beneficial to environmental protection and management decision-making by local government.展开更多
A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient r...A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil.展开更多
Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed foc...Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed focusing on four land uses:forest,pasture,cultivated and urban development.Soil samples were taken from a depth of 0-30 cm on each land use and were analyzed by completely randomized split-plot design in two geographical directions.Results showed that bulk density(BD),electrical conductivity(EC),pH,calcium carbonate equivalent(CCE),and soil particle density(DS) of the soil samples in pastures,cultivated and urban areas increased and the mean weight diameter(MWD),soil porosity(F),organic carbons(OC),total nitrogen(TN),exchangeable cations(Ca 2+,Mg 2+,K +,Na +),cation exchange capacity(CEC) and soil microbial respirations(SMR) decreased,respectively in comparison with the forest soils.For water quality evaluations,sodium adsorption ratio(SAR),electrical conductivity(EC),pH,total dissolved solids(TDS),bicarbonate(HCO 3),chloride(Cl),total hardness(TH),calcium(Ca 2+),potassium(K +),sodium(Na +) and magnesium(Mg 2+) were investigated in two areas:Nahrkhoran and Abgir stations.Results showed that the concentration of TDS,EC and HCO 3 in Naharkhoran station is higher than that in Abgir station.On the other hand,the concentration of TDS,EC and HCO 3 in Abgir station are the relatively higher due to its location.Total hardness had the same trend during the study years except in the last three years;however,TH showed an increase of 25% TH in Naharkhoran for the last two years.Cl,K + and SAR in Naharkhoran station increased by 61%,22%,78% and 56% respectively,in comparison with Abgir station.This study demonstrated that the trend of soil degradation and mismanagement of land use may increase the frequency of urban floods and human health problems.展开更多
The impact of tourist disturbance on the environment has become a focal issue of environmental science, ecology, and travel management studies. To assess the influence of tourist disturbance on soils and plants in the...The impact of tourist disturbance on the environment has become a focal issue of environmental science, ecology, and travel management studies. To assess the influence of tourist disturbance on soils and plants in the Tianchi scenic area of Xinjiang, China, we compared soil properties and plant community characteristics at 0, 5, 10, and 20 m from the tourist trail within areas at three different altitudes, where the intensities of tourist disturbance are distinct. Surface water quality was also studied at three different levels relative to the Tianchi Lake. The results showed that tourist disturbance significantly increased soil pH within 10 m from the trail and soil bulk density on the edge of the trail, but significantly reduced soil organic matter and total nitrogen contents within 5 m from the trail. The number of tree seedlings on the edge of the trail and the shrub coverage and height of herbaceous plants within 5 m from the trail significantly decreased due to tourist disturbance. Changes in herbaceous plant diversity differed by soil zones. In the high altitude region, tourist disturbance led to a remarkable increase in the herbaceous plant diversity on the edge of the trail, while in the low altitude region, tourist disturbance had a low impact on the diversity of herbaceous plants. In addition, tourist activities polluted the surface water, significantly reducing water quality. Thus, current tourist activities have a significant negative impact on the ecological environment in the Tianchi scenic area.展开更多
Based on the monitoring results of environmental quality of the waters near the Oujiang River estuary from 2010 to 2017,the present situation of environmental quality of the waters was analyzed and evaluated.The resul...Based on the monitoring results of environmental quality of the waters near the Oujiang River estuary from 2010 to 2017,the present situation of environmental quality of the waters was analyzed and evaluated.The results showed that pH,DO,COD Mn ,petroleum,and heavy metal (Cu,Pb,Zn,Cd,Hg,As and Cr) content in the waters near the Oujiang River estuary did not exceed the second-class standard of Seawater Quality Standard (GB 3097-1997),while both inorganic nitrogen and reactive phosphate in the waters greatly exceeded the second-class standard.The water quality near the Oujiang River estuary was in an eutrophic state.In terms of sediment quality,the standard index of most evaluation factors except for Cu was smaller than 1,meeting the demands of sediment quality for environmental protection.展开更多
Based on the monitoring results of environmental quality of the waters near the Feiyun River estuary during 2011-2016, the current situation of environmental quality of the waters was analyzed and evaluated. The resul...Based on the monitoring results of environmental quality of the waters near the Feiyun River estuary during 2011-2016, the current situation of environmental quality of the waters was analyzed and evaluated. The results showed that pH, DO, COD Mn , petroleum, and heavy metals (Cu, Pb, Zn, Cd, Hg, As and Cr) in the waters near the Feiyun River estuary did not exceed the second-class standard of Seawater Quality Standard (GB 3097-1997), while both inorganic nitrogen and reactive phosphate in the waters exceeded the second-class standard obviously. The water quality of the waters near the Feiyun River estuary was in an eutrophic state. In terms of sediment quality, the standard index of most evaluation factors except for Cu was smaller than 1, meeting the demands of sediment quality for environmental protection.展开更多
In this paper,the development process of the construction of soil environmental quality standards in China is reviewed,and the construction situation of soil environmental quality standards in typical developed countr...In this paper,the development process of the construction of soil environmental quality standards in China is reviewed,and the construction situation of soil environmental quality standards in typical developed countries is introduced.According to characteristics of soil environment and practice of soil environment management in China,the relevant suggestions are discussed,thereby further perfecting construction work of soil environmental quality standards in China.展开更多
[ Objective] The study aimed to analyze water and soil quality characteristics in Turpan City. [ Method] According to Drinking Water Hy- gienic Standards (GB5749-2006) and Standards for Irrigation Water Quality (GB...[ Objective] The study aimed to analyze water and soil quality characteristics in Turpan City. [ Method] According to Drinking Water Hy- gienic Standards (GB5749-2006) and Standards for Irrigation Water Quality (GB5084-2005), five kinds of water samples collected from a karez, motor-pumped well, canal, village well and Aydingkol Lake in Turpan City as well as two types of soil samples irrigated by the karez and motor- pumped well water were analyzed in quality. [ Remit] Chloride and sulfate content in the village well and Aydingkol Lake water were higher than their limits in Dnnking Water Hygienic Standards, as well as sulfate content in the motor-pumped well and canal water. However, chloride and sul- fate content in the karez water did not exceed their limits. The soil irrigated by the karez water was salinized slightly, and organic matter content was higher; the soil irrigated by the motor-pumped well water was salinized seriously, and organic matter content was lower. [ Conclusion] The karez water is more applicable to farmland irrigation.展开更多
Wetland environment of Assam is fast changing due to encroachments, dumping of solid and liquid wastes, excessive use of wetland water, over exploitation of wetland resources, overgrazing, over fishing, hunting, poach...Wetland environment of Assam is fast changing due to encroachments, dumping of solid and liquid wastes, excessive use of wetland water, over exploitation of wetland resources, overgrazing, over fishing, hunting, poaching, unscientific construction of engineering structures across and along the wetlands, unscientific land use in surrounding areas and various human interferences. On the other hand wetlands play an important role in charging ground water table, sinking of carbon, providing livelihood to thousands of people through fishing, collecting edible plants, agriculture, irrigation and commercial fisheries, besides enrich biodiversity and maintaining environmental quality of a region. The life of wetlands depends on the quantity and quality of water. Any change in water quality and quantity affect the biotic regime of the wetlands. Fish and other aquatic animals and plants found in all levels (floating, rooted, submergent and emergent etc.) are affected by the changes, which are taking place in wetland water. The present study concerns in understanding the environmental quality of the wetlands in Dimoria region of Kamrup (Metro) district, Assam based primarily on the water and soil quality of selected wetlands viz. Jiong, Parkhali, Bomani and Duani.展开更多
An environmental investigation of soil, water and vegetable around Asphalt production plant for heavy metals;Zinc (Zn), Manganese (Mn), Cadmium (Cd), Lead (Pb), Cobalt (Co), Nickel (Ni) and Chromium (Cr) was carried o...An environmental investigation of soil, water and vegetable around Asphalt production plant for heavy metals;Zinc (Zn), Manganese (Mn), Cadmium (Cd), Lead (Pb), Cobalt (Co), Nickel (Ni) and Chromium (Cr) was carried out. Their mean concentrations in soil, water and vegetable were Zn (13.84 mg/Kg, 12.949 mg/L and 11.177 mg/Kg), Mg (3.728 mg/Kg, 0.125 mg/L and 21.837 mg/Kg), Cd (0.012 mg/Kg, 0.018 mg/L and 0.028 mg/Kg) and Pb (0.011 mg/Kg). Co, Ni and Cr were not detected. The results of physiocochemical parameters (pH, moisture content (%), conductivity (μS/cm), organic matter (%), organic carbon (%), CEC (cmol/Kg) and soil composition (%)) were all within the permissible limits by NAFDAC and NDWQS. Results of mineral composition of soil include (N (%) of 0.42, K (cmol/kg) 0.32, Na (cmol/kg) 0.28, Mg (cmol/kg) 3.40, Ca (cmol/kg) 3.80, ?(cmol/kg) 0.46 and (cmol/kg) 0.49);analytical results were within the acceptable range. The chemical parameters investigated for water samples are (Cl- (mg/L) = 1871.20, ?(mg/L) = 12.60, ?(mg/L) = 10.20, NH3 (mg/L) = 8.20, DO (mg/L) = 9.40, BOD (mg/L) = 6.40 and COD (mg/L) = 12.80) within agricultural farmlands around the Asphalt production plant. From the analytical results, conductivity (μS/cm), N (%), ?(mg/L) were significantly different (p which are also the predominant mineral composition in the soil.展开更多
A plastic mixture construction technology using MBER (material becoming earth into rock) soil stabilizer is introduced and the water quality of a solidified soil cistern using the technology is analyzed. Rainwater w...A plastic mixture construction technology using MBER (material becoming earth into rock) soil stabilizer is introduced and the water quality of a solidified soil cistern using the technology is analyzed. Rainwater was harvested in July, 2012. Water quality of runoff and cistern water after storage was measured, including turbidity, chemical oxygen demand (COD), total nitrogen, nitrate, and ammonia. Results show that pollutant concentrations in runoff decreased with time, indicating that runoff in the early time should be removed. Nitrate concentrations in cistern water increased after storage, while the remaining parameters decreased. Measured pollutant concentrations did not exceed the limit according to the standard for drinking water in China. It can be concluded that the solidified soil cistern with plastic mixture construction technology can provide available water for domestic use.展开更多
Habanero pepper(Capsicum chinense Jacq.)is a crop of economic relevance in the Peninsula of Yucatan.Its fruits have a high level of capsaicinoids compared to peppers grown in other regions of the world,which gives the...Habanero pepper(Capsicum chinense Jacq.)is a crop of economic relevance in the Peninsula of Yucatan.Its fruits have a high level of capsaicinoids compared to peppers grown in other regions of the world,which gives them industrial importance.Soil is an important factor that affects pepper development,nutritional quality,and capsaicinoid content.However,the effect of soil type on fruit development and capsaicinoid metabolism has been little understood.This work aimed to compare the effect of soils with contrasting characteristics,black soil(BS)and red soil(RS),on the expression of genes related to the development of fruits,and capsaicinoid synthesis using a transcriptomic analysis of the habanero pepper fruits.Plants growing in RS had bigger fruits and higher expression of genes related to floral development,fruit abscission,and softening which suggests that RS stimulates fruit development from early stages until maturation stages.Fruits from plants growing in BS had enrichment in metabolic pathways related to growth,sugars,and photosynthesis.Besides,these fruits had higher capsaicinoid accumulation at 25 days post-anthesis,and higher expression of genes related to the branched-chain amino acids metabolism(ketol-acid reductisomerase KARI),pentose phosphate pathway and production of NADPH(glucose-6-phosphate-1-dehydrogenase G6PDH),and proteasome and vesicular traffic in cells(26S proteasome regulatory subunit T4 RPT4),which suggest that BS is better in the early stimulation of pathways related to the nutritional quality and capsaicinoid metabolism in the fruits.展开更多
This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port H...This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port Harcourt metropolis as a result of the proliferation of petrol service stations especially the condition of ground and nearby surface water. This serves as a useful tool to government and regulatory authorities for planning especially due to lack of central water supply system in Port Harcourt metropolis. The parameters studied were sampled, measured and analyzed using in situ and other standard methods. Remarkable results above permissible limits of interest for physicochemical parameter analysis revealed pH values from 4.6 to 6.8, electrical conductivity from 0.002 µS/cm to 0.42 µS/cm, salinity from 3 ppm to 4050 ppm, and temperatures from 19.9˚C to 32.6˚C. Total dissolved solids (TDS) varied from 7 ppm to 1000 ppm, biochemical oxygen demand (BOD) from 0.167 mg/L to 2.167 mg/L, chemical oxygen demand (COD) from 0.257 mg/L to 3.253 mg/L, and dissolved oxygen (DO) concentrations from 1.70 mg/L to 4.30 mg/L. Specifically, water samples from NNPC Filling Station (Choba) and Eneka Pond displayed “Poor” water quality with WQI values of 112.003 and 112.076, respectively. Similarly, ALLTEC Filling Station (Eneka) and TOTAL Filling Station (Rumuomasi) had “Poor” water quality with WQI values of 173.707 and 180.946, respectively. In contrast, Excelsis Filling Station (Akpajo) demonstrated “Good” water quality with a WQI of 85.2072, while Total Filling Stations (Slaughter) and Choba River revealed “unsuitable for drinking” water quality with WQI values of 552.461 and 654.601, respectively. Slaughter River also indicated very poor water quality with a WQI of 442.024. The physicochemical and nutrient analyses of the water samples showed that activities of the filling stations within the study area may have polluted groundwater in the environment posing poor aesthetics and great health risk to consumers of the water bodies. The findings underscore the need for immediate remediation efforts and stricter regulatory measures to protect water quality. The study concluded that surface and groundwater near petrol service stations in Port Harcourt are unfit for drinking and irrigation purposes without adequate treatment.展开更多
Heavy metal contents in the soils in the Baoshan District of Shanghai were monitored to evaluate the risk of soil environmental quality degradation due to rapid urbanization and to reveal the ways of heavy metal accum...Heavy metal contents in the soils in the Baoshan District of Shanghai were monitored to evaluate the risk of soil environmental quality degradation due to rapid urbanization and to reveal the ways of heavy metal accumulation in soil during rapid urban sprawl. It was found that the soils in this district were commonly contaminated by Pb, Zn and Cd. Evaluated with a geo-accumulation index (Igeo), the rate of Pb contamination in soils was 100% with 59% of these graded as moderate-severe or severe; Zn contamination reached 59% with 6% graded as moderate-severe or severe; and Cd contamination was over 50%, with one site graded as moderate-severe and another severe-extremely severe. Metal contamination of soils around the Shanghai metropolis was mainly attributed to traffic, industrial production, wastewater irrigation and improper disposal of solid wastes. Because of continuing urbanization, the cultivated land around the metropolis should be comprehensively planned and carefully managed. Also the soil environmental quality of vegetable production bases in this area should be monitored regularly, with vegetables to be grown selected according to the degrees and types of soil contamination.展开更多
Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil ...Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources.Phytoremediation,being more cost-effective and fewer side effects than physical and chemical approaches,has gained increasing popularity in both academic and practical circles.More than 400 plant species have been identified to have potential for soil and water remediation.Among them,Thlaspi,Brassica,Sedum alfredii H.,and Arabidopsis species have been mostly studied.It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come.This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.展开更多
文摘To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals like Cd and Pb in solid waste in mining areas and across the water body,sediment,soil and agricultural product ecosystem surrounding the mining areas.Focusing on the residual solid waste samples in lead-zinc deposits in a certain area of Guizhou Province,along with samples of topsoils,irrigation water,river sediments,and crops from surrounding areas.This study analyzed the distributions of eight heavy metals,i.e.,Cd,As,Cr,Hg,Pb,Zn,Cu,and Ni,in the samples through field surveys and sample tests.Furthermore,this study assessed the contamination levels and ecological risks of heavy metals in soils,sediments,and agricultural products using methods such as the single-factor index,Nemerow composite index,and potential ecological risk assessment.The results indicate that heavy metals in the solid waste samples all exhibited concentrations exceeding their risk screening values,with 60%greater than their risk intervention values.The soils and sediments demonstrate slight and moderate comprehensive ecological risks of heavy metals.The single-factor potential ecological risks of heavy metals in both the soil and sediment samples decreased in the order of Hg,Cd,Pb,As,Cu,Zn,Cr,and Ni,suggesting the same sources of heavy metals in the soils and sediments.Most of the agricultural product samples exhibited over-limit concentrations of heavy metals dominated by Cd,Pb,Ni,and Cr,excluding Hg and As.The agricultural product assessment using the Nemerow composite index reveals that 35%of the agricultural product samples reached the heavy metal contamination level,implying that the agricultural products from farmland around the solid waste dumps have been contaminated with heavy metals.The eight heavy metals in the soil,sediment,and agricultural product samples manifested high coefficients of variation(CVs),indicating pronounced spatial variability.This suggests that their concentrations in soils,sediments,and agricultural products are significantly influenced by human mining activities.Additionally,the agricultural products exhibit strong transport and accumulation capacities for Cd,Cu,and Zn.
文摘Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.
基金Supported by National Science and Technology Project of "the Eleventh Five-year Plan" of China (2006BAD17B07)Doctoral Fund of Shandong Academy of Agricultural Sciences (2006YBS015)~~
文摘[Objective] The aim was to evaluate heavy metal environmental quality of irrigation water in vegetable farmlands of Shandong Province. [Method] Heavy metal contents including Hg,Cd,As,Cr (+6),Pb,Cu and Zn in irrigation water of main vegetable farmlands of Shandong Province were investigated by randomly sampling,and the environmental quality conditions of these heavy metals were evaluated by methods of single quality index and complex quality index. [Result] The results showed that the average contents of heavy metals in irrigation water of Shouguang,Laiyang,Jinxiang and Zhangqiu were all far lower than the limit values prescribed by 'Farmland Environmental Quality Evaluation Standards for Edible Agricultural Products' (HJ332-2006),and no heavy metal was found beyond the limit value in every sample. The single quality indices of the 7 elements in the studied 4 places were all lower than 0.5. The comprehensive quality index of the seven elements was 0.317 8 in Shouguang,0.320 4 in Laiyang,0.232 6 in Jinxiang,and 0.260 7 in Zhangqiu. The environmental quality of irrigation water in the studied four places were all set at the first class. [Conclusion] The environmental quality of irrigation water in the 4 places belonged to clean level and were fit for the plantation of no pollution vegetables.
基金Xiong′an New Area Science and Technology Innovation Project(2022XACX1000)。
文摘[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.
基金Project supported by the National Natural Science Foundation of China (No. 40001008) the Science and Technology Project of Zhejiang Province (No. 2004C32066).
文摘Heavy metal concentrations in agricultural soils of Zhejiang Province were monitored to indicate the status of heavy metal contamination and assess environmental quality of agricultural soils. A total of 908 soil samples were collected from 38 counties in Zbejiang Province and eight heavy metal (Cd, Cr, Pb, Hg, Cu, Zn, Ni and As) concentrations had been evaluated in agricultural soil. It was found 775 samples were unpolluted and 133 samples were slightly polluted and more respectively, that is approximately 14.65% agricultural soil samples had the heavy metal concentration above the threshold level in this province by means of Nemerow's synthetical pollution index method according to the second grade of Standards for Soil Environmental Quality of China (GB15618- 1995). Contamination of Cd was the highest, followed by Ni, As and Zn were lower correspondingly. Moreover, Inverse Distance Weighted (IDW) interpolation method was used to make an assessment map of soil environmental quality based on the Nemerow's pollution index and the soil environmental quality was categorized into five grades. Moreover, ten indices were calculated as input parameters for principal component analysis (PCA) and the principal components (PCs) were created to compare environmental quality of different soils and regions. The results revealed that environmental quality of tea soils was better than that of paddy soils, vegetable soils and fruit soils. This study indicated that GIS combined with multivariate statistical approaches proved to be effective and powerful tool in the mapping of soil contamination distribution and the assessment of soil environmental quality on provincial scale, which is beneficial to environmental protection and management decision-making by local government.
基金1Project supported by the Knowledge Innovative Program of the Chinese Academy of Sciences (No. KZCX2-413) andthe National High Technology Research and Development Program of China (863 Program) (No. 2002AA601012).
文摘A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil.
文摘Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed focusing on four land uses:forest,pasture,cultivated and urban development.Soil samples were taken from a depth of 0-30 cm on each land use and were analyzed by completely randomized split-plot design in two geographical directions.Results showed that bulk density(BD),electrical conductivity(EC),pH,calcium carbonate equivalent(CCE),and soil particle density(DS) of the soil samples in pastures,cultivated and urban areas increased and the mean weight diameter(MWD),soil porosity(F),organic carbons(OC),total nitrogen(TN),exchangeable cations(Ca 2+,Mg 2+,K +,Na +),cation exchange capacity(CEC) and soil microbial respirations(SMR) decreased,respectively in comparison with the forest soils.For water quality evaluations,sodium adsorption ratio(SAR),electrical conductivity(EC),pH,total dissolved solids(TDS),bicarbonate(HCO 3),chloride(Cl),total hardness(TH),calcium(Ca 2+),potassium(K +),sodium(Na +) and magnesium(Mg 2+) were investigated in two areas:Nahrkhoran and Abgir stations.Results showed that the concentration of TDS,EC and HCO 3 in Naharkhoran station is higher than that in Abgir station.On the other hand,the concentration of TDS,EC and HCO 3 in Abgir station are the relatively higher due to its location.Total hardness had the same trend during the study years except in the last three years;however,TH showed an increase of 25% TH in Naharkhoran for the last two years.Cl,K + and SAR in Naharkhoran station increased by 61%,22%,78% and 56% respectively,in comparison with Abgir station.This study demonstrated that the trend of soil degradation and mismanagement of land use may increase the frequency of urban floods and human health problems.
基金sponsored by the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(2015VEA048)the National Natural Science Foundation of China(41301163+2 种基金41301204)the Project of Featured Major Tourism Management(HHXY2013LY)the Doctoral Startup Funds from Huanghuai University(2013D1310)
文摘The impact of tourist disturbance on the environment has become a focal issue of environmental science, ecology, and travel management studies. To assess the influence of tourist disturbance on soils and plants in the Tianchi scenic area of Xinjiang, China, we compared soil properties and plant community characteristics at 0, 5, 10, and 20 m from the tourist trail within areas at three different altitudes, where the intensities of tourist disturbance are distinct. Surface water quality was also studied at three different levels relative to the Tianchi Lake. The results showed that tourist disturbance significantly increased soil pH within 10 m from the trail and soil bulk density on the edge of the trail, but significantly reduced soil organic matter and total nitrogen contents within 5 m from the trail. The number of tree seedlings on the edge of the trail and the shrub coverage and height of herbaceous plants within 5 m from the trail significantly decreased due to tourist disturbance. Changes in herbaceous plant diversity differed by soil zones. In the high altitude region, tourist disturbance led to a remarkable increase in the herbaceous plant diversity on the edge of the trail, while in the low altitude region, tourist disturbance had a low impact on the diversity of herbaceous plants. In addition, tourist activities polluted the surface water, significantly reducing water quality. Thus, current tourist activities have a significant negative impact on the ecological environment in the Tianchi scenic area.
文摘Based on the monitoring results of environmental quality of the waters near the Oujiang River estuary from 2010 to 2017,the present situation of environmental quality of the waters was analyzed and evaluated.The results showed that pH,DO,COD Mn ,petroleum,and heavy metal (Cu,Pb,Zn,Cd,Hg,As and Cr) content in the waters near the Oujiang River estuary did not exceed the second-class standard of Seawater Quality Standard (GB 3097-1997),while both inorganic nitrogen and reactive phosphate in the waters greatly exceeded the second-class standard.The water quality near the Oujiang River estuary was in an eutrophic state.In terms of sediment quality,the standard index of most evaluation factors except for Cu was smaller than 1,meeting the demands of sediment quality for environmental protection.
文摘Based on the monitoring results of environmental quality of the waters near the Feiyun River estuary during 2011-2016, the current situation of environmental quality of the waters was analyzed and evaluated. The results showed that pH, DO, COD Mn , petroleum, and heavy metals (Cu, Pb, Zn, Cd, Hg, As and Cr) in the waters near the Feiyun River estuary did not exceed the second-class standard of Seawater Quality Standard (GB 3097-1997), while both inorganic nitrogen and reactive phosphate in the waters exceeded the second-class standard obviously. The water quality of the waters near the Feiyun River estuary was in an eutrophic state. In terms of sediment quality, the standard index of most evaluation factors except for Cu was smaller than 1, meeting the demands of sediment quality for environmental protection.
基金Supported by Preparation Project of Science Popularization Materials for Publicity and Education of Soil Environmental Protection,Ministry of Environmental Protection(H201606)
文摘In this paper,the development process of the construction of soil environmental quality standards in China is reviewed,and the construction situation of soil environmental quality standards in typical developed countries is introduced.According to characteristics of soil environment and practice of soil environment management in China,the relevant suggestions are discussed,thereby further perfecting construction work of soil environmental quality standards in China.
基金Supported by the National Natural Science Foundation of China(41261030)Key Laboratory Project of Oasis Ecosystem of Ministryof Education(041079)
文摘[ Objective] The study aimed to analyze water and soil quality characteristics in Turpan City. [ Method] According to Drinking Water Hy- gienic Standards (GB5749-2006) and Standards for Irrigation Water Quality (GB5084-2005), five kinds of water samples collected from a karez, motor-pumped well, canal, village well and Aydingkol Lake in Turpan City as well as two types of soil samples irrigated by the karez and motor- pumped well water were analyzed in quality. [ Remit] Chloride and sulfate content in the village well and Aydingkol Lake water were higher than their limits in Dnnking Water Hygienic Standards, as well as sulfate content in the motor-pumped well and canal water. However, chloride and sul- fate content in the karez water did not exceed their limits. The soil irrigated by the karez water was salinized slightly, and organic matter content was higher; the soil irrigated by the motor-pumped well water was salinized seriously, and organic matter content was lower. [ Conclusion] The karez water is more applicable to farmland irrigation.
文摘Wetland environment of Assam is fast changing due to encroachments, dumping of solid and liquid wastes, excessive use of wetland water, over exploitation of wetland resources, overgrazing, over fishing, hunting, poaching, unscientific construction of engineering structures across and along the wetlands, unscientific land use in surrounding areas and various human interferences. On the other hand wetlands play an important role in charging ground water table, sinking of carbon, providing livelihood to thousands of people through fishing, collecting edible plants, agriculture, irrigation and commercial fisheries, besides enrich biodiversity and maintaining environmental quality of a region. The life of wetlands depends on the quantity and quality of water. Any change in water quality and quantity affect the biotic regime of the wetlands. Fish and other aquatic animals and plants found in all levels (floating, rooted, submergent and emergent etc.) are affected by the changes, which are taking place in wetland water. The present study concerns in understanding the environmental quality of the wetlands in Dimoria region of Kamrup (Metro) district, Assam based primarily on the water and soil quality of selected wetlands viz. Jiong, Parkhali, Bomani and Duani.
文摘An environmental investigation of soil, water and vegetable around Asphalt production plant for heavy metals;Zinc (Zn), Manganese (Mn), Cadmium (Cd), Lead (Pb), Cobalt (Co), Nickel (Ni) and Chromium (Cr) was carried out. Their mean concentrations in soil, water and vegetable were Zn (13.84 mg/Kg, 12.949 mg/L and 11.177 mg/Kg), Mg (3.728 mg/Kg, 0.125 mg/L and 21.837 mg/Kg), Cd (0.012 mg/Kg, 0.018 mg/L and 0.028 mg/Kg) and Pb (0.011 mg/Kg). Co, Ni and Cr were not detected. The results of physiocochemical parameters (pH, moisture content (%), conductivity (μS/cm), organic matter (%), organic carbon (%), CEC (cmol/Kg) and soil composition (%)) were all within the permissible limits by NAFDAC and NDWQS. Results of mineral composition of soil include (N (%) of 0.42, K (cmol/kg) 0.32, Na (cmol/kg) 0.28, Mg (cmol/kg) 3.40, Ca (cmol/kg) 3.80, ?(cmol/kg) 0.46 and (cmol/kg) 0.49);analytical results were within the acceptable range. The chemical parameters investigated for water samples are (Cl- (mg/L) = 1871.20, ?(mg/L) = 12.60, ?(mg/L) = 10.20, NH3 (mg/L) = 8.20, DO (mg/L) = 9.40, BOD (mg/L) = 6.40 and COD (mg/L) = 12.80) within agricultural farmlands around the Asphalt production plant. From the analytical results, conductivity (μS/cm), N (%), ?(mg/L) were significantly different (p which are also the predominant mineral composition in the soil.
基金The National Key Technology R&D Program of China during the 12th Five Year Plan Period(No.2011BAD31B05)the National Natural Science Foundation of China(No.41371276)+1 种基金the National Science and Technology Major Project of China(No.2009ZX07212-002-003-02)the Knowledge Innovation Project of theInstitute of Soil and Water Conservation,CAS&MWR(No.A315021304)
文摘A plastic mixture construction technology using MBER (material becoming earth into rock) soil stabilizer is introduced and the water quality of a solidified soil cistern using the technology is analyzed. Rainwater was harvested in July, 2012. Water quality of runoff and cistern water after storage was measured, including turbidity, chemical oxygen demand (COD), total nitrogen, nitrate, and ammonia. Results show that pollutant concentrations in runoff decreased with time, indicating that runoff in the early time should be removed. Nitrate concentrations in cistern water increased after storage, while the remaining parameters decreased. Measured pollutant concentrations did not exceed the limit according to the standard for drinking water in China. It can be concluded that the solidified soil cistern with plastic mixture construction technology can provide available water for domestic use.
文摘Habanero pepper(Capsicum chinense Jacq.)is a crop of economic relevance in the Peninsula of Yucatan.Its fruits have a high level of capsaicinoids compared to peppers grown in other regions of the world,which gives them industrial importance.Soil is an important factor that affects pepper development,nutritional quality,and capsaicinoid content.However,the effect of soil type on fruit development and capsaicinoid metabolism has been little understood.This work aimed to compare the effect of soils with contrasting characteristics,black soil(BS)and red soil(RS),on the expression of genes related to the development of fruits,and capsaicinoid synthesis using a transcriptomic analysis of the habanero pepper fruits.Plants growing in RS had bigger fruits and higher expression of genes related to floral development,fruit abscission,and softening which suggests that RS stimulates fruit development from early stages until maturation stages.Fruits from plants growing in BS had enrichment in metabolic pathways related to growth,sugars,and photosynthesis.Besides,these fruits had higher capsaicinoid accumulation at 25 days post-anthesis,and higher expression of genes related to the branched-chain amino acids metabolism(ketol-acid reductisomerase KARI),pentose phosphate pathway and production of NADPH(glucose-6-phosphate-1-dehydrogenase G6PDH),and proteasome and vesicular traffic in cells(26S proteasome regulatory subunit T4 RPT4),which suggest that BS is better in the early stimulation of pathways related to the nutritional quality and capsaicinoid metabolism in the fruits.
文摘This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port Harcourt metropolis as a result of the proliferation of petrol service stations especially the condition of ground and nearby surface water. This serves as a useful tool to government and regulatory authorities for planning especially due to lack of central water supply system in Port Harcourt metropolis. The parameters studied were sampled, measured and analyzed using in situ and other standard methods. Remarkable results above permissible limits of interest for physicochemical parameter analysis revealed pH values from 4.6 to 6.8, electrical conductivity from 0.002 µS/cm to 0.42 µS/cm, salinity from 3 ppm to 4050 ppm, and temperatures from 19.9˚C to 32.6˚C. Total dissolved solids (TDS) varied from 7 ppm to 1000 ppm, biochemical oxygen demand (BOD) from 0.167 mg/L to 2.167 mg/L, chemical oxygen demand (COD) from 0.257 mg/L to 3.253 mg/L, and dissolved oxygen (DO) concentrations from 1.70 mg/L to 4.30 mg/L. Specifically, water samples from NNPC Filling Station (Choba) and Eneka Pond displayed “Poor” water quality with WQI values of 112.003 and 112.076, respectively. Similarly, ALLTEC Filling Station (Eneka) and TOTAL Filling Station (Rumuomasi) had “Poor” water quality with WQI values of 173.707 and 180.946, respectively. In contrast, Excelsis Filling Station (Akpajo) demonstrated “Good” water quality with a WQI of 85.2072, while Total Filling Stations (Slaughter) and Choba River revealed “unsuitable for drinking” water quality with WQI values of 552.461 and 654.601, respectively. Slaughter River also indicated very poor water quality with a WQI of 442.024. The physicochemical and nutrient analyses of the water samples showed that activities of the filling stations within the study area may have polluted groundwater in the environment posing poor aesthetics and great health risk to consumers of the water bodies. The findings underscore the need for immediate remediation efforts and stricter regulatory measures to protect water quality. The study concluded that surface and groundwater near petrol service stations in Port Harcourt are unfit for drinking and irrigation purposes without adequate treatment.
基金Project supported by the National Natural Science Foundation of China (Nos. 40235054, 40131020 and 40101013) and the Science Foundation of Shanghai Higher Schools for Young Teachers.
文摘Heavy metal contents in the soils in the Baoshan District of Shanghai were monitored to evaluate the risk of soil environmental quality degradation due to rapid urbanization and to reveal the ways of heavy metal accumulation in soil during rapid urban sprawl. It was found that the soils in this district were commonly contaminated by Pb, Zn and Cd. Evaluated with a geo-accumulation index (Igeo), the rate of Pb contamination in soils was 100% with 59% of these graded as moderate-severe or severe; Zn contamination reached 59% with 6% graded as moderate-severe or severe; and Cd contamination was over 50%, with one site graded as moderate-severe and another severe-extremely severe. Metal contamination of soils around the Shanghai metropolis was mainly attributed to traffic, industrial production, wastewater irrigation and improper disposal of solid wastes. Because of continuing urbanization, the cultivated land around the metropolis should be comprehensively planned and carefully managed. Also the soil environmental quality of vegetable production bases in this area should be monitored regularly, with vegetables to be grown selected according to the degrees and types of soil contamination.
基金Project supported by the Higher Education Commission,Government of Pakistan for the faculty training under the R & D Project"Strengthening Department of Soil Science and Soil and Water Conservation" at the University of Florida,USA,a grant from the St. Lucie River Water Initiative (SFWMD contract No. OT060162),USA,in partthe Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0536),China
文摘Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources.Phytoremediation,being more cost-effective and fewer side effects than physical and chemical approaches,has gained increasing popularity in both academic and practical circles.More than 400 plant species have been identified to have potential for soil and water remediation.Among them,Thlaspi,Brassica,Sedum alfredii H.,and Arabidopsis species have been mostly studied.It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come.This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.