期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Immobilization of penicillin G acylase on paramagnetic polymer microspheres with epoxy groups 被引量:7
1
作者 Xing Chen Lu Yang +5 位作者 Wangcheng Zhan Li Wang Yun Guo Yunsong Wang Guanzhong Lu Yanglong Guo 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期47-53,共7页
Paramagnetic polymer microspheres were synthesized by the inverse suspension polymerizationmethod through polymerization of glycidyl methacrylate,ally glycidyl ether and methacrylamide onthe surface of silica‐coated ... Paramagnetic polymer microspheres were synthesized by the inverse suspension polymerizationmethod through polymerization of glycidyl methacrylate,ally glycidyl ether and methacrylamide onthe surface of silica‐coated Fe3O4nanoparticles using N,N’‐methylene‐bis(acrylamide)as across‐linking agent.Penicillin G acylase(PGA)was covalently immobilized on the surface of theparamagnetic microspheres by reacting the amino groups of the PGA molecules with the epoxygroups of the paramagnetic polymer microspheres.The effect of the SiO2coating and the amount ofparamagnetic Fe3O4nanoparticles on the initial activity and the operational stability of the immobilizedPGA was investigated.The results indicated that SiO2played an important role in the polymerization process and paramagnetic polymer microspheres with a SiO2‐coated Fe3O4nanoparticles mass content of7.5%are an optimal support material for PGA immobilization.Immobilized PGA on the paramagnetic polymer microspheres shows a high initial activity of430U/g(wet)and retains99%of its initial activity after recycling10times.Furthermore,immobilized PGA exhibits high thermal stability,pH stability and excellent reusability,which can be rapidly recycled by the aid of magnet.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 Paramagnetic polymer microspheres epoxy groups Penicillin G acylase Covalent bonding IMMOBILIZATION
下载PDF
Preparation and Characterization of Non-porous Superparamagnetic Microspheres with Epoxy Groups by Dispersion Polymerization 被引量:4
2
作者 马志亚 官月平 +1 位作者 刘先桥 刘会洲 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第2期239-243,共5页
Non-porous superparamagnetic polymer microspheres with epoxy groups were prepared by dispersion polymerization of glycidyl methacrylate (GMA) in the presence of magnetic iron oxide (Fe3O4) nanoparticles coated with ol... Non-porous superparamagnetic polymer microspheres with epoxy groups were prepared by dispersion polymerization of glycidyl methacrylate (GMA) in the presence of magnetic iron oxide (Fe3O4) nanoparticles coated with oleic acid. The polymerization was carried out in the ethanol/water medium using polyvinylpyrrolidone (PVP) and 2,2’-azobisisobutyronitrile (AIBN) as stabilizer and initiator, respectively. The magnetic microspheres obtained were characterized with scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the magnetic microspheres had an average size of-1μm with superparamagnetic characteristics. The saturation magnetization was found to be 4.5emu.g-1. There was abundance of epoxy groups with density of 0.028 mmol·g^-1 in microspheres. The magnetic PGMA microspheres have extensive potential uses in magnetic bioseparation and biotechnology. 展开更多
关键词 polyglycidyl methacrylate magnetic polymer microsphere dispersion polymerization epoxy groups BIOSEPARATION
下载PDF
Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination
3
作者 Junchen Peng Xue Yin +6 位作者 Dandan Dong Zhongyuan Guo Qinqin Wang Minmin Liu Fei He Bin Dai Chaofeng Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第6期258-262,共5页
Carbon materials have been used as the support for catalysts in the field of acetylene hydrochlorination,the influence of inevitable oxygen-containing moieties on the reaction is often ignored and the mechanism of the... Carbon materials have been used as the support for catalysts in the field of acetylene hydrochlorination,the influence of inevitable oxygen-containing moieties on the reaction is often ignored and the mechanism of the oxygen-doping structure remains ambiguous.Herein,we explored the effect of the oxygen-containing group(C-O-C)in the support on the activity of single-atom dispersed Cu catalysts.By immersing the Cu single-atom catalyst in an alkaline solution,the epoxy species on the carbon support was cleaved to obtain a pure ether species while the Cu site was modified to a more electron-deficient state.The turnover frequency value of Cu/O-FLP catalyst with epoxy groups was 1.6-fold higher than that of alkaline treated catalyst.Our result indicated that the epoxy groups could assist adjacent single-atom Cu sites to synergistically promote the adsorption and cleavage of the reactant hydrogen chloride toward form C-OH and Cu-Cl bonds,and reduce the reaction energy barrier.The presence of electron deficient Cu sites and ether species could induce competitive adsorption of the acetylene and hydrogen chloride,thereby reducing the activity of the catalyst.This study highlights the influence of surface oxygen species and the tunability of the support,providing the foundation for the fabrication of higher-activity Cu catalysts for acetylene hydrochlorination. 展开更多
关键词 epoxy group Acetylene hydrochlorination Single-atom Cu catalyst Synergistic dissociation
原文传递
Spontaneous Cracking of Graphite Oxide Sheet on Oxygen Deficient ZnO Film
4
作者 刘金养 蔡洪冰 +3 位作者 丁怀义 张琨 潘楠 王晓平 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第1期87-91,I0004,共6页
Graphite oxide (GO) is an important material of wide applications. Owing to its good mechanical property, the GO sheet is always expected to be stable and remains flat on various substrates. Here we demonstrate for ... Graphite oxide (GO) is an important material of wide applications. Owing to its good mechanical property, the GO sheet is always expected to be stable and remains flat on various substrates. Here we demonstrate for the first time an unexpected behavior of the GO sheet on oxygen deficient ZnO film, namely the spontaneous cracking of the entire GO sheet into many small pieces. This unusual behavior has been carefully investigated by a series of control experiments and SEM, XPS and PL measurements. It is anticipated that the oxygen vacancies in the oxygen deficient ZnO film can annihilate epoxy groups of the GO sheet, resulting in the unzipping of the aligned epoxy groups on GO sheet. A prototype of the white light detector made from the cracked GO sheet is fabricated and the device demonstrates high stability and good reproducibility. 展开更多
关键词 Graphite oxide epoxy group ZnO film Oxygen vacancy PHOTORESPONSE
下载PDF
Synthesis and characterization of star-comb polybutadiene and poly(ethylene-co-butene) 被引量:1
5
作者 Zhang, Hong Xia Li, Yang +4 位作者 Zhang, Chun Qing Hu, Yan Ming Wang, Yu Rong Ma, Hong Wei Li, Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第3期361-364,共4页
A novel star-comb polybutadiene(SC-PB) was synthesized with n-butyllithium(n-BuLi) as initiator,epoxidized star liquid polybutadiene(ESPB) as coupling agent,cyclohexane as solvent by living anionic polymerization and ... A novel star-comb polybutadiene(SC-PB) was synthesized with n-butyllithium(n-BuLi) as initiator,epoxidized star liquid polybutadiene(ESPB) as coupling agent,cyclohexane as solvent by living anionic polymerization and grafting-onto technology. The SC-PB was subsequently hydrogenated by homogeneous catalysis(catalytic hydrogenation using nickel naphthenate/ triisobutyl aluminum),to transform the SC-PB into the corresponding star-comb poly(ethylene-co-butene)(SC-PEB).The SC-PB was characterized by SEC-TALLS,~1... 展开更多
关键词 Anionic polymerization Grafting reaction epoxy group Star-comb polymer HYDROGENATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部