The crystal structure determination and mass spectrometric fragmentation analysis of the medicinal ingredient eprosartan (4-[2-butyl-5-(2-carboxy-3-thiophen-2-yl-propenyl)-imidazol-l-ylmethyl]-benzoic acid) are pr...The crystal structure determination and mass spectrometric fragmentation analysis of the medicinal ingredient eprosartan (4-[2-butyl-5-(2-carboxy-3-thiophen-2-yl-propenyl)-imidazol-l-ylmethyl]-benzoic acid) are presented. The single-crystal X-ray diffraction shows that the colorless transparent crystal of eprosartan is of monoclinic system, space group P2/c with a = 16.1861(15), b = 10.9813(12), c = 28.610(3) A, β = 118.452(2)°, Z = 4, V= 4471.1(8) A3, Dc = 1.288 g/cm3,μ(MoKα) = 0.178 mm^-1 and F(000) = 1831. The independent part of the unit cell contains two eprosartan molecules and one unordered H2O molecule in the crystal structure which is fixed by inter- and intramolecular hydrogen bonds. The product ions in electrospray ionization tandem mass spectrometry (ESI-MSn) displays the protonated eprosartan dissociated in three competitive pathways and the fragmentation mechanism is proposed and supported by the FTICRMSn results.展开更多
基金supported by the National Natural Science Foundation of China (20772109)
文摘The crystal structure determination and mass spectrometric fragmentation analysis of the medicinal ingredient eprosartan (4-[2-butyl-5-(2-carboxy-3-thiophen-2-yl-propenyl)-imidazol-l-ylmethyl]-benzoic acid) are presented. The single-crystal X-ray diffraction shows that the colorless transparent crystal of eprosartan is of monoclinic system, space group P2/c with a = 16.1861(15), b = 10.9813(12), c = 28.610(3) A, β = 118.452(2)°, Z = 4, V= 4471.1(8) A3, Dc = 1.288 g/cm3,μ(MoKα) = 0.178 mm^-1 and F(000) = 1831. The independent part of the unit cell contains two eprosartan molecules and one unordered H2O molecule in the crystal structure which is fixed by inter- and intramolecular hydrogen bonds. The product ions in electrospray ionization tandem mass spectrometry (ESI-MSn) displays the protonated eprosartan dissociated in three competitive pathways and the fragmentation mechanism is proposed and supported by the FTICRMSn results.