For a long time, it has been generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. B...For a long time, it has been generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. But this is not true. By studying the motion of a spinning particle in gravitational field, it is found that there exist spin-spin interactions in gauge theory of gravity. Its mechanism is that a spinning particle will generate gravitomagnetic field in space-time, and this gravitomagnetic field will interact with the spin of another particle, which will cause spin-spin interactions. So, spin-spin interactions are transmitted by gravitational field. The form of spin-spin interactions in post Newtonian approximations is deduced. This result can also be deduced from the Papapetrou equation. This kind of interaction will not affect the renormalizability of the theory. The spin-spin interactions will violate the weak equivalence principle, and the violation effects are detectable. An experiment is proposed to detect the effects of the violation of the weak equivalence principle.展开更多
In a test of the weak equivalence principle (WEP) with a rotating torsion pendulum, it is important to estimate the amplitude of the modulation signal with high precision. We use a torsional filter to remove the fre...In a test of the weak equivalence principle (WEP) with a rotating torsion pendulum, it is important to estimate the amplitude of the modulation signal with high precision. We use a torsional filter to remove the free oscillation signal and employ the correlation method to estimate the amplitude of the modulation signal. The data analysis of an experiment shows that the uncertainties of amplitude components of the modulation signal obtained by the correlation method are in agreement with those due to white noise. The power spectral density of the modulation signal obtained by the correlation method is about one order higher than the thermal noise limit. It indicates that the correlation method is an effective way to estimate the amplitude of the modulation signal and it is instructive to conduct a high-accuracy WEP test.展开更多
Systematic error suppression and test data processing are very important in improving the accuracy and sensitivity of the atom interferometer(AI)-based weak-equivalence-principle(WEP) test in space. Here we present a ...Systematic error suppression and test data processing are very important in improving the accuracy and sensitivity of the atom interferometer(AI)-based weak-equivalence-principle(WEP) test in space. Here we present a spectrum correlation method to investigate the test data of the AI-based WEP test in space by analyzing the characteristics of systematic errors and noises. The power spectrum of the Eotvos coefficient η, systematic errors, and noises in AI-based WEP test in space are analyzed and calculated in detail. By using the method, the WEP violation signal is modulated from direct current(DC) frequency band to alternating current(AC) frequency band. We find that the signal can be effectively extracted and the influence of systematic errors can be greatly suppressed by analyzing the power spectrum of the test data when the spacecraft is in an inertial pointing mode. Furthermore, the relation between the Eotvos coefficient η and the number of measurements is obtained under certain simulated parameters. This method will be useful for both isotopic and nonisotopic AI-based WEP tests in space.展开更多
A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error sourc...A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error source in the test of WEP.The result shows that the uncompensated gravity gradient effect from the coupling term of the dominated gravity gradient multipole moment component q_(21) and the relative multipole field component Q_(21) contributes to an uncertainty of 1×10^(-11) on the E otv os parameter. We make a Q_(21) compensation to reduce the effect by about 20 times, and the limit of the test precision due to this coupling is improved to a level of a part in 10^(13).展开更多
Coriolis effect is an important error source in the weak equivalence principle(WEP)test using atom interferometer.In this paper,the problem of Coriolis error in WEP test is studied theoretically and experimentally.In ...Coriolis effect is an important error source in the weak equivalence principle(WEP)test using atom interferometer.In this paper,the problem of Coriolis error in WEP test is studied theoretically and experimentally.In theoretical simulation,the Coriolis effect is analyzed by establishing an error model.The measurement errors of Eotvos coefficient(η)in WEP test related to experimental parameters,such as horizontal-velocity difference and horizontal-position difference of atomic clouds,horizontal-position difference of detectors,and rotation compensation of Raman laser’s mirror are calculated.In experimental investigation,the position difference between^85Rb and^87Rb atomic clouds is reduced to 0.1 mm by optimizing the experimental parameters,an alternating detection method is used to suppress the error caused by detection position difference,thus the Coriolis error related to the atomic clouds and detectors is reduced to 1.1 × 10^-9.This Coriolis error is further corrected by com pensating the rotation of Raman laser's mirror,and the total uncertainty o f rj measurement related to the Coriolis effect is reduced as δη=4.4 × 10^-11.展开更多
A differential accelerometer comprising of two rotating masses made of the same material is proposed for drop tower-based free-fall testing of the spin-spin force between the rotating mass and the Earth. The measureme...A differential accelerometer comprising of two rotating masses made of the same material is proposed for drop tower-based free-fall testing of the spin-spin force between the rotating mass and the Earth. The measurement is performed by placing the two concentric masses of very different momenta in a vacuum drop capsule which is falling freely in the Earth's gravitational field. A nonzero output of the differential aeeelerometer is an indication of possible violation of new equivalence principle (NEP). We present the conceptual design of a modified free-fall NEP experiment which can be performed at the Belting drop tower. Design and evaluation of the differential accelerometer with a hybrid electrostatic/magnetic suspension system are presented to accommodate for operation on ground and drop-tower tests. Details specific to the measurement uncertainty are discussed to yield an NEP test accuracy of 7.2×10^-9.展开更多
The significance of quadrupole gravitational force is discussed for test mass in equivalence principle (EP), and the angular moment acting on a cylindrically symmetrical body due to quadrupole force is calculated, whi...The significance of quadrupole gravitational force is discussed for test mass in equivalence principle (EP), and the angular moment acting on a cylindrically symmetrical body due to quadrupole force is calculated, which will result in nutational oscillatory effect. The oscillations contain a perturbation with the same frequency of EP violation signal, which is mitigated by two different methods as in Galileo Galilei (GG) mission and μSCOPE. In GG the sensor for readout is sensitive to differential forces in the orbital plane perpendicular to spin axis of test cylinders. In order to mitigate the nutational oscillatory effect, test mass should be rapidly rotated with the spin axis. However, in μSCOPE, the readout sensitive axis is the symmetry axis in the orbital plane. This nutational oscillation will produce a second order effect in the rotation amplitude at twice the signal frequency, and could be subtracted easily, too.展开更多
Thermal noise is one of the most fundamental limits to the sensitivity in weak equivalence principle test with a rotating torsion pendulum. Velocity damping and internal damping are two of many contributions at the th...Thermal noise is one of the most fundamental limits to the sensitivity in weak equivalence principle test with a rotating torsion pendulum. Velocity damping and internal damping are two of many contributions at the thermal noise, and which one mainly limits the torsion pendulum in low frequency is difficult to be verified by experiment. Based on the conventional method of fast Fourier transform, we propose a developed method to determine the thermal noise limit and then obtain the precise power spectrum density of the pendulum motion signal. The experiment result verifies that the thermal noise is mainly contributed by the internal damping in the fiber in the low frequency torsion pendulum experiment with a high vacuum. Quantitative data analysis shows that the basic noise level in the experiment is about one to two times of the theoretical value of internal damping thermal noise.展开更多
The Doppler effect can be defined as the frequency shift suffered by a wave phenomenon, when there is a difference in relative speed between the waves generated and their source. We know that it occurs in the case of ...The Doppler effect can be defined as the frequency shift suffered by a wave phenomenon, when there is a difference in relative speed between the waves generated and their source. We know that it occurs in the case of mechanical and electromagnetic waves. We propose to generalize the Doppler effect to the case of frequency changes of certain oscillatory variables in biology before and after puberty, starting from the basis that a metabolically accelerated system is equivalent to a mechanically accelerated system. We then established the following objectives: To verify if there is an average difference in heart and respiratory rates, before and after puberty. To verify the association of these frequency differences with the metabolic activity estimated as basal metabolic rate or BMR. We studied heart and respiratory rate data from healthy people of both sexes, verifying the frequency distribution before and after puberty. We also study the relationship of the frequency distribution with the evolution of the basal metabolic rate throughout life. Analysis of the results shows that the highest heart and respiratory rates occur before puberty, while the lowest rates occur after puberty. A high correlation of the evolution of the variables studied with the evolution of the metabolic acceleration of the system throughout life is also evident. Taking into account that a mechanically accelerated system is equivalent to a metabolically accelerated system, we can conclude that the frequency distribution found is the expression of a generalization of the Doppler effect in the case of biological physical systems.展开更多
Stress-dependence of the intrinsic time of viscoelastic materialsis investigated. The influence of stress level on the intrinsic timeis considered to be similar to that of temperature, pressure, solventcon- centration...Stress-dependence of the intrinsic time of viscoelastic materialsis investigated. The influence of stress level on the intrinsic timeis considered to be similar to that of temperature, pressure, solventcon- centration, damage and physical aging. Thetime-temperature-stress equivalence principle is proposed, byemploying which, the creep curves at different temperatures andstress level can be shifted into a master curve at referencetemperature and stress level.展开更多
This work is a kind of thought experiment aimed at answering the question: what might a theory look like in which time and space (spacetime) are not fundamental? The article formulates theoretical frameworks that intr...This work is a kind of thought experiment aimed at answering the question: what might a theory look like in which time and space (spacetime) are not fundamental? The article formulates theoretical frameworks that introduce the number of spacetime dimensions, the principle of equivalence of mass, and the value of the gravitational constant not as empirically given data, but as results of theoretical deduction. This analysis opens up potential connections between gravitational and electrostatic interactions, proposing a new approach to traditional physical assumptions. The theory is presented in a preliminary form, intended to inspire possible further research. The final part of the paper proposes experiments to verify these ideas.展开更多
Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sin...Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.展开更多
The Eotvos experiment on the verification of equivalence between inertial mass and gravitational mass of a body is famous for its accuracy. A question is, however, can these experimental results be applied to the case...The Eotvos experiment on the verification of equivalence between inertial mass and gravitational mass of a body is famous for its accuracy. A question is, however, can these experimental results be applied to the case of a physical space in general relativity, where the space coordinates could be arbitrary? It is pointed out that it can be validly applied because it has been proven that Einstein's equivalence principle for a physical space must have a frame of reference with the Euclidean-like structure. Will claimed further that such an overall accuracy can be translated into an accuracy of the equivalence between inertial mass and each type of energy. It is shown that, according to general relativity, such a claim is incorrect. The root of this problem is due to an inadequate understanding of special relativity that produced the famous equation E=mc^2, which must be understood in terms of energy conservation. Concurrently, it is pointed out that this error is a problem in Will's book, ‘Theory and Experiment in Gravitational Physics'.展开更多
Eugene Nida's Translation Theory has a profound influence both on global and Chinese translation circle.Although this theory is widely used,it also become a controversial topic in a certain extent.Through the movi...Eugene Nida's Translation Theory has a profound influence both on global and Chinese translation circle.Although this theory is widely used,it also become a controversial topic in a certain extent.Through the movie MuLAN and some applications in useful areas to discuss whether Nida's Translation Theory is still applicable within translating field.展开更多
The good translation of trademarks should be accepted by most customers, which is the purpose of the trademarks translation. It arouses people's attention to the problems existing in trademark translation. This paper...The good translation of trademarks should be accepted by most customers, which is the purpose of the trademarks translation. It arouses people's attention to the problems existing in trademark translation. This paper probes two main problematic aspects in trademark translation: the problems in the aspect of the culture and the problems in the aspect of the language. Based on the main translating rule of "equivalence principle", it attempts to focus on the solutions to tackle the problems.展开更多
Physicists possess an intuitive awareness of Euclidian space and time and Galilean transformation, and are then challenged with Minkowski space-time and Einstein’s curved space-time. Relativistic experiments support ...Physicists possess an intuitive awareness of Euclidian space and time and Galilean transformation, and are then challenged with Minkowski space-time and Einstein’s curved space-time. Relativistic experiments support the “time-dilation” interpretation and others support “curved space-time” interpretation. In this, and related work, we investigate the key issues in terms of the intuitive space-time frame. In particular, we provide alternative approaches to explain “time dilation” and to explain the energy density for gravity systems. We approach the latter problem from an information perspective.展开更多
Fracability characterizes the effectiveness of hydraulic fracturing.The existing assessment methods cannot reflect the actual value of the effectiveness due to a lack of comprehensive consideration and neglect of the ...Fracability characterizes the effectiveness of hydraulic fracturing.The existing assessment methods cannot reflect the actual value of the effectiveness due to a lack of comprehensive consideration and neglect of the influences of engineering factors.This study aims to solve this problem by implementing geological static data and production dynamic data in multivariate analysis in Zhaotong shale gas demonstration zone.First,the reservoir quality index(RQI)was introduced to evaluate the exploration potential by integrating the geological parameters with gray relational analysis.Moreover,the differences in fracturing fluid types and proppant sizes were considered,and the operating parameters were normalized on the basis of the equivalence principle.Finally,the general reservoir fracability index(GRFI)was proposed based on a dimensioned processing of the various parameters.A case study was conducted to verify the accuracy and feasibility of this new approach.The results demonstrate that(1)the organic carbon and gas content are adjusted to contribute the most to the calculation of the RQI,while the effective porosity contributes the least;(2)the fracturing scale is the main operating parameter determining the fracability,which has the strongest correlation with the effectiveness of fracking;and(3)the GRFI has a positive correlation with shale gas production,and the lower limit of the GRFI of 2,000 corresponds to a daily production of 50,000 m3/d;this value is defined as the threshold value of a stripper well.The GRFI is consistent with the productivity trend of shale gas wells in the research block,which suggests that the new model is accurate and practical for well candidate selection.展开更多
We theoretically investigate the application of the fringe-locking method(FLM) in the dual-species quantum test of the weak equivalence principle(WEP).With the FLM,the measurement is performed invariably at the mi...We theoretically investigate the application of the fringe-locking method(FLM) in the dual-species quantum test of the weak equivalence principle(WEP).With the FLM,the measurement is performed invariably at the midfringe,and the extraction of the phase shift for atom interferometers is linearized.For the simultaneous interferometers,this linearization enables a good common-mode rejection of vibration noise,which is usually the main limit for high precision WEP tests of the dual-species kind.We note that this method also allows for an unbiased determination of the gravity accelerations difference,which meanwhile is ready to be implemented.展开更多
According to the equivalence principles, high frequency approximation and boundary conditions, a method has been developed to deal with the EM scattering by a rectangular conducting flat plate coated with uniaxial ani...According to the equivalence principles, high frequency approximation and boundary conditions, a method has been developed to deal with the EM scattering by a rectangular conducting flat plate coated with uniaxial anisotropic radar absorbing material (RAM). The simple and effective method is available to the system of RCS prediction in which the large complex targets modeled by facets and wedges. Numerical results show some properties of EM scattering by conducting plate coated with thin uniaxial anisotropic RAM.展开更多
itherto, a precision Concept for curve fitting problems has not been set. By using the theory of functional analysis, the author of this paper established a space theory basis for curve fitting problems. Also given in...itherto, a precision Concept for curve fitting problems has not been set. By using the theory of functional analysis, the author of this paper established a space theory basis for curve fitting problems. Also given in the paper is the precision concept of the curve fitting problems and the method for constructing the fitting of a curve satisfying given precision requirements.展开更多
文摘For a long time, it has been generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. But this is not true. By studying the motion of a spinning particle in gravitational field, it is found that there exist spin-spin interactions in gauge theory of gravity. Its mechanism is that a spinning particle will generate gravitomagnetic field in space-time, and this gravitomagnetic field will interact with the spin of another particle, which will cause spin-spin interactions. So, spin-spin interactions are transmitted by gravitational field. The form of spin-spin interactions in post Newtonian approximations is deduced. This result can also be deduced from the Papapetrou equation. This kind of interaction will not affect the renormalizability of the theory. The spin-spin interactions will violate the weak equivalence principle, and the violation effects are detectable. An experiment is proposed to detect the effects of the violation of the weak equivalence principle.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575160,91636221,and 11605065)
文摘In a test of the weak equivalence principle (WEP) with a rotating torsion pendulum, it is important to estimate the amplitude of the modulation signal with high precision. We use a torsional filter to remove the free oscillation signal and employ the correlation method to estimate the amplitude of the modulation signal. The data analysis of an experiment shows that the uncertainties of amplitude components of the modulation signal obtained by the correlation method are in agreement with those due to white noise. The power spectral density of the modulation signal obtained by the correlation method is about one order higher than the thermal noise limit. It indicates that the correlation method is an effective way to estimate the amplitude of the modulation signal and it is instructive to conduct a high-accuracy WEP test.
基金Project supported by the National Natural Science Foundation of China(Grants No.11947057)the Foundation for Distinguished Young Scientist of Jiangxi Province,China(Grant No.2016BCB23009)the Postdoctoral Applied Research Program of Qingdao City,Shandong Province,China(Grant No.62350079311135).
文摘Systematic error suppression and test data processing are very important in improving the accuracy and sensitivity of the atom interferometer(AI)-based weak-equivalence-principle(WEP) test in space. Here we present a spectrum correlation method to investigate the test data of the AI-based WEP test in space by analyzing the characteristics of systematic errors and noises. The power spectrum of the Eotvos coefficient η, systematic errors, and noises in AI-based WEP test in space are analyzed and calculated in detail. By using the method, the WEP violation signal is modulated from direct current(DC) frequency band to alternating current(AC) frequency band. We find that the signal can be effectively extracted and the influence of systematic errors can be greatly suppressed by analyzing the power spectrum of the test data when the spacecraft is in an inertial pointing mode. Furthermore, the relation between the Eotvos coefficient η and the number of measurements is obtained under certain simulated parameters. This method will be useful for both isotopic and nonisotopic AI-based WEP tests in space.
基金supported by the National Natural Science Foundation of China(Grant Nos.11575160 and 11605065)
文摘A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error source in the test of WEP.The result shows that the uncompensated gravity gradient effect from the coupling term of the dominated gravity gradient multipole moment component q_(21) and the relative multipole field component Q_(21) contributes to an uncertainty of 1×10^(-11) on the E otv os parameter. We make a Q_(21) compensation to reduce the effect by about 20 times, and the limit of the test precision due to this coupling is improved to a level of a part in 10^(13).
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0302002)the National Natural Science Foundation of China(Grant Nos.91736311 and 11574354)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21010100)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2016300).
文摘Coriolis effect is an important error source in the weak equivalence principle(WEP)test using atom interferometer.In this paper,the problem of Coriolis error in WEP test is studied theoretically and experimentally.In theoretical simulation,the Coriolis effect is analyzed by establishing an error model.The measurement errors of Eotvos coefficient(η)in WEP test related to experimental parameters,such as horizontal-velocity difference and horizontal-position difference of atomic clouds,horizontal-position difference of detectors,and rotation compensation of Raman laser’s mirror are calculated.In experimental investigation,the position difference between^85Rb and^87Rb atomic clouds is reduced to 0.1 mm by optimizing the experimental parameters,an alternating detection method is used to suppress the error caused by detection position difference,thus the Coriolis error related to the atomic clouds and detectors is reduced to 1.1 × 10^-9.This Coriolis error is further corrected by com pensating the rotation of Raman laser's mirror,and the total uncertainty o f rj measurement related to the Coriolis effect is reduced as δη=4.4 × 10^-11.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91436107 and 61374207
文摘A differential accelerometer comprising of two rotating masses made of the same material is proposed for drop tower-based free-fall testing of the spin-spin force between the rotating mass and the Earth. The measurement is performed by placing the two concentric masses of very different momenta in a vacuum drop capsule which is falling freely in the Earth's gravitational field. A nonzero output of the differential aeeelerometer is an indication of possible violation of new equivalence principle (NEP). We present the conceptual design of a modified free-fall NEP experiment which can be performed at the Belting drop tower. Design and evaluation of the differential accelerometer with a hybrid electrostatic/magnetic suspension system are presented to accommodate for operation on ground and drop-tower tests. Details specific to the measurement uncertainty are discussed to yield an NEP test accuracy of 7.2×10^-9.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10205005 and 10121503
文摘The significance of quadrupole gravitational force is discussed for test mass in equivalence principle (EP), and the angular moment acting on a cylindrically symmetrical body due to quadrupole force is calculated, which will result in nutational oscillatory effect. The oscillations contain a perturbation with the same frequency of EP violation signal, which is mitigated by two different methods as in Galileo Galilei (GG) mission and μSCOPE. In GG the sensor for readout is sensitive to differential forces in the orbital plane perpendicular to spin axis of test cylinders. In order to mitigate the nutational oscillatory effect, test mass should be rapidly rotated with the spin axis. However, in μSCOPE, the readout sensitive axis is the symmetry axis in the orbital plane. This nutational oscillation will produce a second order effect in the rotation amplitude at twice the signal frequency, and could be subtracted easily, too.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575160 and 11275075)the Natural Science Foundation of Key Projects of Hubei Province,China(Grant No.2013CFA045)
文摘Thermal noise is one of the most fundamental limits to the sensitivity in weak equivalence principle test with a rotating torsion pendulum. Velocity damping and internal damping are two of many contributions at the thermal noise, and which one mainly limits the torsion pendulum in low frequency is difficult to be verified by experiment. Based on the conventional method of fast Fourier transform, we propose a developed method to determine the thermal noise limit and then obtain the precise power spectrum density of the pendulum motion signal. The experiment result verifies that the thermal noise is mainly contributed by the internal damping in the fiber in the low frequency torsion pendulum experiment with a high vacuum. Quantitative data analysis shows that the basic noise level in the experiment is about one to two times of the theoretical value of internal damping thermal noise.
文摘The Doppler effect can be defined as the frequency shift suffered by a wave phenomenon, when there is a difference in relative speed between the waves generated and their source. We know that it occurs in the case of mechanical and electromagnetic waves. We propose to generalize the Doppler effect to the case of frequency changes of certain oscillatory variables in biology before and after puberty, starting from the basis that a metabolically accelerated system is equivalent to a mechanically accelerated system. We then established the following objectives: To verify if there is an average difference in heart and respiratory rates, before and after puberty. To verify the association of these frequency differences with the metabolic activity estimated as basal metabolic rate or BMR. We studied heart and respiratory rate data from healthy people of both sexes, verifying the frequency distribution before and after puberty. We also study the relationship of the frequency distribution with the evolution of the basal metabolic rate throughout life. Analysis of the results shows that the highest heart and respiratory rates occur before puberty, while the lowest rates occur after puberty. A high correlation of the evolution of the variables studied with the evolution of the metabolic acceleration of the system throughout life is also evident. Taking into account that a mechanically accelerated system is equivalent to a metabolically accelerated system, we can conclude that the frequency distribution found is the expression of a generalization of the Doppler effect in the case of biological physical systems.
基金the Nalional Natural Science Foundation of China (No.19632030,50003005)the Education Committee of Hunan Province (No.99C122)
文摘Stress-dependence of the intrinsic time of viscoelastic materialsis investigated. The influence of stress level on the intrinsic timeis considered to be similar to that of temperature, pressure, solventcon- centration, damage and physical aging. Thetime-temperature-stress equivalence principle is proposed, byemploying which, the creep curves at different temperatures andstress level can be shifted into a master curve at referencetemperature and stress level.
文摘This work is a kind of thought experiment aimed at answering the question: what might a theory look like in which time and space (spacetime) are not fundamental? The article formulates theoretical frameworks that introduce the number of spacetime dimensions, the principle of equivalence of mass, and the value of the gravitational constant not as empirically given data, but as results of theoretical deduction. This analysis opens up potential connections between gravitational and electrostatic interactions, proposing a new approach to traditional physical assumptions. The theory is presented in a preliminary form, intended to inspire possible further research. The final part of the paper proposes experiments to verify these ideas.
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.
文摘The Eotvos experiment on the verification of equivalence between inertial mass and gravitational mass of a body is famous for its accuracy. A question is, however, can these experimental results be applied to the case of a physical space in general relativity, where the space coordinates could be arbitrary? It is pointed out that it can be validly applied because it has been proven that Einstein's equivalence principle for a physical space must have a frame of reference with the Euclidean-like structure. Will claimed further that such an overall accuracy can be translated into an accuracy of the equivalence between inertial mass and each type of energy. It is shown that, according to general relativity, such a claim is incorrect. The root of this problem is due to an inadequate understanding of special relativity that produced the famous equation E=mc^2, which must be understood in terms of energy conservation. Concurrently, it is pointed out that this error is a problem in Will's book, ‘Theory and Experiment in Gravitational Physics'.
文摘Eugene Nida's Translation Theory has a profound influence both on global and Chinese translation circle.Although this theory is widely used,it also become a controversial topic in a certain extent.Through the movie MuLAN and some applications in useful areas to discuss whether Nida's Translation Theory is still applicable within translating field.
文摘The good translation of trademarks should be accepted by most customers, which is the purpose of the trademarks translation. It arouses people's attention to the problems existing in trademark translation. This paper probes two main problematic aspects in trademark translation: the problems in the aspect of the culture and the problems in the aspect of the language. Based on the main translating rule of "equivalence principle", it attempts to focus on the solutions to tackle the problems.
文摘Physicists possess an intuitive awareness of Euclidian space and time and Galilean transformation, and are then challenged with Minkowski space-time and Einstein’s curved space-time. Relativistic experiments support the “time-dilation” interpretation and others support “curved space-time” interpretation. In this, and related work, we investigate the key issues in terms of the intuitive space-time frame. In particular, we provide alternative approaches to explain “time dilation” and to explain the energy density for gravity systems. We approach the latter problem from an information perspective.
基金funded by the Research Project of the Hubei Provincial Department of Education under grant no.Q20181307the Project of Shandong Provincial Key Laboratory of Depositional Mineralization&Sedimentary Mineral under grant no.DMSM2019001+2 种基金the Project of the Key Laboratory of Well Stability and Fluid&Rock Mechanics in Oil and Gas Reservoir of Shaanxi Province,Xi’an Shiyou University under grant no.WSFRM20190302001the National Natural Science Foundation of China under grant no.51574039the National Science and Technology Major Project under grant no.2016ZX05061-009
文摘Fracability characterizes the effectiveness of hydraulic fracturing.The existing assessment methods cannot reflect the actual value of the effectiveness due to a lack of comprehensive consideration and neglect of the influences of engineering factors.This study aims to solve this problem by implementing geological static data and production dynamic data in multivariate analysis in Zhaotong shale gas demonstration zone.First,the reservoir quality index(RQI)was introduced to evaluate the exploration potential by integrating the geological parameters with gray relational analysis.Moreover,the differences in fracturing fluid types and proppant sizes were considered,and the operating parameters were normalized on the basis of the equivalence principle.Finally,the general reservoir fracability index(GRFI)was proposed based on a dimensioned processing of the various parameters.A case study was conducted to verify the accuracy and feasibility of this new approach.The results demonstrate that(1)the organic carbon and gas content are adjusted to contribute the most to the calculation of the RQI,while the effective porosity contributes the least;(2)the fracturing scale is the main operating parameter determining the fracability,which has the strongest correlation with the effectiveness of fracking;and(3)the GRFI has a positive correlation with shale gas production,and the lower limit of the GRFI of 2,000 corresponds to a daily production of 50,000 m3/d;this value is defined as the threshold value of a stripper well.The GRFI is consistent with the productivity trend of shale gas wells in the research block,which suggests that the new model is accurate and practical for well candidate selection.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41127002,11574099,and 11474115)the National Basic Research Program of China(Grant No.2010CB832806)
文摘We theoretically investigate the application of the fringe-locking method(FLM) in the dual-species quantum test of the weak equivalence principle(WEP).With the FLM,the measurement is performed invariably at the midfringe,and the extraction of the phase shift for atom interferometers is linearized.For the simultaneous interferometers,this linearization enables a good common-mode rejection of vibration noise,which is usually the main limit for high precision WEP tests of the dual-species kind.We note that this method also allows for an unbiased determination of the gravity accelerations difference,which meanwhile is ready to be implemented.
文摘According to the equivalence principles, high frequency approximation and boundary conditions, a method has been developed to deal with the EM scattering by a rectangular conducting flat plate coated with uniaxial anisotropic radar absorbing material (RAM). The simple and effective method is available to the system of RCS prediction in which the large complex targets modeled by facets and wedges. Numerical results show some properties of EM scattering by conducting plate coated with thin uniaxial anisotropic RAM.
文摘itherto, a precision Concept for curve fitting problems has not been set. By using the theory of functional analysis, the author of this paper established a space theory basis for curve fitting problems. Also given in the paper is the precision concept of the curve fitting problems and the method for constructing the fitting of a curve satisfying given precision requirements.