Based on a first-order state-vector differential equation representation of Maxwell's equations, an analytical formulation is derived for the equivalent currents on an anisotropic material backed by a metal surfa...Based on a first-order state-vector differential equation representation of Maxwell's equations, an analytical formulation is derived for the equivalent currents on an anisotropic material backed by a metal surface, and the relation between two currents is also considered. These expressions are degenerated into the common forms for some simple cases. This effort will provide the theoretical preparation for the approximate calculation of electromagnetic scattering from a conducting object coated by an anisotropic material.展开更多
Compared with scattering from a rough surface only, composite scattering from a target above a rough surface has become so practical that it is a subject of great interest. At present, this problem has been solved by ...Compared with scattering from a rough surface only, composite scattering from a target above a rough surface has become so practical that it is a subject of great interest. At present, this problem has been solved by some numerical methods which will produce an enormous calculation amount. In order to overcome this shortcoming, the reciprocity theorem (RT) and the method of equivalent edge currents (MEC) are used in this paper. Due to the advantage of RT, the difficulty in computing the secondary scattered fields is reduced. Simultaneously, MEC, a high-frequency method with edge diffraction considered, is used to calculate the scattered field from the cone-cylinder target with a high accuracy and efficiency. The backscattered field and the polarization currents of the rough sea surface are evaluated by the Kirchhoff approximation (KA) method and physical optics (PO) method, respectively. The effects of the backscattering radar cross section (RCS) and the Doppler spectrum on the size of the target and the windspeed of the sea surface for different incident angles are analysed in detail.展开更多
Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot ...Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot calculate the scattering function of electrically large object under the condition to wideband,an effective method of improved equivalent edge currents is presented and applied to SAR imaging simulation for the first time.This method improves calculating velocity and has relatively high precision.The concrete steps of applying the method are given.By way of the simulation experiment,the effectiveness of the method is verified.展开更多
Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship ha...Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship has universal validity for determining the equivalent input noise current spectral density for optical receiver designs, as verified by measuring a 155Mb/s high-impedance optical receiver front.end. Good agreement between calculated and simulated results has been achieved.展开更多
In this paper, based on the equivalent single diode circuit model of the solar cell, an equivalent circuit diagram for two serial solar cells is drawn. Its equations of current and voltage are derived from Kirchhoff'...In this paper, based on the equivalent single diode circuit model of the solar cell, an equivalent circuit diagram for two serial solar cells is drawn. Its equations of current and voltage are derived from Kirchhoff's current and voltage law. First, parameters are obtained from the I-V (current-voltage) curves for typical monocrystalline silicon solar cells (125 mmx 125 mm). Then, by regarding photo-generated current, shunt resistance, serial resistance of the first solar cell, and resistance load as the variables. The properties of shunt currents (Ishl and Ish2), diode currents (/D1 and/]:)2), and load current (IL) for the whole two serial solar cells are numerically analyzed in these four cases for the first time, and the corresponding physical explanations are made. We find that these parameters have different influences on the internal currents of solar cells. Our results will provide a reference for developing higher efficiency solar cell module and contribute to the better understanding of the reason of efficiency loss of solar cell module.展开更多
A time-harmonic equivalent current dipole model is proposed to simulate EEG source which deals with the problem concerning the capacitance effect. The expressions of potentials in both homogeneous infinite dielectric ...A time-harmonic equivalent current dipole model is proposed to simulate EEG source which deals with the problem concerning the capacitance effect. The expressions of potentials in both homogeneous infinite dielectric medium and dielectric sphere on the electroquasistatic condition are presented. The potential in a 3-layer inhomogeneous spherical head is computed by using this model. The influences on potential produced by time-harmonic character and permittivity are discussed. The results show that potentials in dielectric sphere are affected by frequency and permittivity.展开更多
Experiment was carried out to simulate different loading level elements under coupling of stray current and 5% chlorine salt solution. When calculating corrosion of reinforcement, the influence of loading should be co...Experiment was carried out to simulate different loading level elements under coupling of stray current and 5% chlorine salt solution. When calculating corrosion of reinforcement, the influence of loading should be considered based on the first law of Faraday electrolysis. The current density of the corrosion was measured by the linear polarization resistance method. The function of corrosion current density was obtained by nonlinear fitting method, and the influence coefficient of loading level to electrochemical equivalent was obtained base on the function of corrosion current density. The experimental results show that the corrosion current density increases with stress ratio of concrete structures. The reinforcement corrosion weight can be calculated through the influence coefficients of electrochemical equivalent and the result is in line with the actual situation.展开更多
There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cab...There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cable simultaneously, a double differential-mode current in- jection test method (DDMCI) is proposed. The method adopted the equivalence source wave theorem and Baum-Liu-Tesche(BLT) equation as its theory foundation. The equivalent corresponding relation between injection voltage and radiation electric field intensity is derived, and the phase relation between the two injection voltage sources is confirmed. The results indicate that the amplitude and phase of the equivalent injection voltage source is closely related to the S parameter of directional coupling device, the transmission line length, and the source vector in BLT equation, but has nothing to do with the reflection coefficient between the two equipment pieces. Therefore, by choosing the right amplitude and phase of the double injection voltage sources, the DDMCI test is equivalent to the radiation test for two interconnected equipment of a system.展开更多
The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this ...The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this study focuses on the design of gradient coil of unilateral magnet.The unilateral MRI system is used to image the local area above the magnet.The current density distribution of the gradient coil cannot be used as a series of superconducting nuclear magnetic resonance gradient coils,because the region of interest(ROI)and the wiring area of the unilateral magnet are both cylindrical side arc surfaces.Therefore,the equivalent magnetic dipole method is used to design the gradient coil,and the algorithm is improved for the special case of the wiring area and the ROI,so the X and Y gradient coils are designed.Finally,a flexible printed circuit board(PCB)is used to fabricate the gradient coil,and the magnetic field distribution of the ROI is measured by a Gauss meter,and the measured results match with the simulation results.The gradient linearities of x and y coils are 2.82%and 3.56%,respectively,less than 5%of the commercial gradient coil requirement.展开更多
In view of the application importance of resistance network in modern science and technology, this paper presents the basic structure of a three terminals ladder shaped resistance network, for which, to study in- dept...In view of the application importance of resistance network in modern science and technology, this paper presents the basic structure of a three terminals ladder shaped resistance network, for which, to study in- depth the equivalent resistance, carry out network analysis by applying virtual current method and construct a model of two elements three orders differential equation. Based on different marginal conditions, two general adaptive rules for the three-terminal ladder shaped inlet resistance, as well as two ultimate rules for the equiva- lent resistance of three-terminal infinite ladder shaped were given.展开更多
The electromagnetic field under applied AC and DC current in round and rectangular pipe was systematically investigated, then a concept of 'equivalent current density' was proposed for evaluating the inhomogen...The electromagnetic field under applied AC and DC current in round and rectangular pipe was systematically investigated, then a concept of 'equivalent current density' was proposed for evaluating the inhomogeneous electromagnetic pinch force, and the mono-component removal efficiency and the overall removal efficiency of inclusion were formulated. It is founded that flat pipe is superior to round pipe for the electromagnetic removal of inclusion, and DC current can get a higher removal efficiency than A C current due to absence of skin phenomenon. Under usual condition, a removal efficiency of 52% for 10μm inclusion or more than 92% for 20μm inclusion can be achieved by imposing a current density of 3×106A/m2 in a flat pipe.展开更多
An equivalent relationship between electro magnetic flowmeters (EMFs) and the Hall effect is discussed in principle and three equivalent conclusions about their measuring equations are derived. Thereby,the calibratio...An equivalent relationship between electro magnetic flowmeters (EMFs) and the Hall effect is discussed in principle and three equivalent conclusions about their measuring equations are derived. Thereby,the calibration using the ionic current (CUIC) is introduced to the calibration of EMFs in a special Hall effect system. A basic system with these equations is specially given and discussed for realizing the method. Two key points about CUIC are proved by a simple experiment.展开更多
A new technique of eigen mode analysis, Method of Natural Orthogonal Components (MNOC) is used to analyze the ionospheric equivalent current systems obtained on the basis of magnetic data at six meridian magnetometer ...A new technique of eigen mode analysis, Method of Natural Orthogonal Components (MNOC) is used to analyze the ionospheric equivalent current systems obtained on the basis of magnetic data at six meridian magnetometer chains in the northern hemisphere during March 17 19, 1978. The results show that the whole current pattern for any given instant consists of a few eigen modes with different intensities. The first eigen mode exhibits a two cell current construction, characterizing the large scale magnetospheric convection and directly driven process, while the second eigen mode shows a concentrated westward electrojet at midnight sector, characterizing the substorm current wedge and the loading unloading process. The first mode consistently exists whenever during quiet periods or at substorms, and its intensity increases from the beginning of the growth phase of substorms, then quickly intensifies in the expansion phase, followed by a gradual decrease in the recovery phase. On the other hand, the intensity of the second mode remains to be near zero during both quiet time and the growth phase of substorms. Its rapid enhancement occurs in the expansion phase. These characteristics in the current patterns and the intensity variations coincide with the defined physical processes of the directly driven and loading unloading components.展开更多
文摘Based on a first-order state-vector differential equation representation of Maxwell's equations, an analytical formulation is derived for the equivalent currents on an anisotropic material backed by a metal surface, and the relation between two currents is also considered. These expressions are degenerated into the common forms for some simple cases. This effort will provide the theoretical preparation for the approximate calculation of electromagnetic scattering from a conducting object coated by an anisotropic material.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971067)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070701010)
文摘Compared with scattering from a rough surface only, composite scattering from a target above a rough surface has become so practical that it is a subject of great interest. At present, this problem has been solved by some numerical methods which will produce an enormous calculation amount. In order to overcome this shortcoming, the reciprocity theorem (RT) and the method of equivalent edge currents (MEC) are used in this paper. Due to the advantage of RT, the difficulty in computing the secondary scattered fields is reduced. Simultaneously, MEC, a high-frequency method with edge diffraction considered, is used to calculate the scattered field from the cone-cylinder target with a high accuracy and efficiency. The backscattered field and the polarization currents of the rough sea surface are evaluated by the Kirchhoff approximation (KA) method and physical optics (PO) method, respectively. The effects of the backscattering radar cross section (RCS) and the Doppler spectrum on the size of the target and the windspeed of the sea surface for different incident angles are analysed in detail.
基金supported by the National Natural Science Foundation of China(60871070)
文摘Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot calculate the scattering function of electrically large object under the condition to wideband,an effective method of improved equivalent edge currents is presented and applied to SAR imaging simulation for the first time.This method improves calculating velocity and has relatively high precision.The concrete steps of applying the method are given.By way of the simulation experiment,the effectiveness of the method is verified.
文摘Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship has universal validity for determining the equivalent input noise current spectral density for optical receiver designs, as verified by measuring a 155Mb/s high-impedance optical receiver front.end. Good agreement between calculated and simulated results has been achieved.
基金Project supported by the National High Technology Research and Development Program of China (Grant No.2012AA050302)the National Natural Science Foundation of China (Grant Nos.61076059 and 51202301)the Science & Technology Research Project of Guangdong Province,China (Grant No.2011A032304001)
文摘In this paper, based on the equivalent single diode circuit model of the solar cell, an equivalent circuit diagram for two serial solar cells is drawn. Its equations of current and voltage are derived from Kirchhoff's current and voltage law. First, parameters are obtained from the I-V (current-voltage) curves for typical monocrystalline silicon solar cells (125 mmx 125 mm). Then, by regarding photo-generated current, shunt resistance, serial resistance of the first solar cell, and resistance load as the variables. The properties of shunt currents (Ishl and Ish2), diode currents (/D1 and/]:)2), and load current (IL) for the whole two serial solar cells are numerically analyzed in these four cases for the first time, and the corresponding physical explanations are made. We find that these parameters have different influences on the internal currents of solar cells. Our results will provide a reference for developing higher efficiency solar cell module and contribute to the better understanding of the reason of efficiency loss of solar cell module.
基金This work was supported by the Science and Technology Foundation of Guizhou Province under Grant No.20052005.
文摘A time-harmonic equivalent current dipole model is proposed to simulate EEG source which deals with the problem concerning the capacitance effect. The expressions of potentials in both homogeneous infinite dielectric medium and dielectric sphere on the electroquasistatic condition are presented. The potential in a 3-layer inhomogeneous spherical head is computed by using this model. The influences on potential produced by time-harmonic character and permittivity are discussed. The results show that potentials in dielectric sphere are affected by frequency and permittivity.
基金Funded by the National Natural Science Foundation of China(No.50808005)the National "11-5" Science and Technology Supporting Program(No.2006BAJ27B04)the Major Program of Beijing Municipal Natural Sci-ence Foundation(No.8100001)and Beijing talent innovation
文摘Experiment was carried out to simulate different loading level elements under coupling of stray current and 5% chlorine salt solution. When calculating corrosion of reinforcement, the influence of loading should be considered based on the first law of Faraday electrolysis. The current density of the corrosion was measured by the linear polarization resistance method. The function of corrosion current density was obtained by nonlinear fitting method, and the influence coefficient of loading level to electrochemical equivalent was obtained base on the function of corrosion current density. The experimental results show that the corrosion current density increases with stress ratio of concrete structures. The reinforcement corrosion weight can be calculated through the influence coefficients of electrochemical equivalent and the result is in line with the actual situation.
基金Project supported by Arm Pre-research Program (51333040101), National Defense 973 Program (6131380301 ), National Natural Science Foundation of China (61040003).
文摘There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cable simultaneously, a double differential-mode current in- jection test method (DDMCI) is proposed. The method adopted the equivalence source wave theorem and Baum-Liu-Tesche(BLT) equation as its theory foundation. The equivalent corresponding relation between injection voltage and radiation electric field intensity is derived, and the phase relation between the two injection voltage sources is confirmed. The results indicate that the amplitude and phase of the equivalent injection voltage source is closely related to the S parameter of directional coupling device, the transmission line length, and the source vector in BLT equation, but has nothing to do with the reflection coefficient between the two equipment pieces. Therefore, by choosing the right amplitude and phase of the double injection voltage sources, the DDMCI test is equivalent to the radiation test for two interconnected equipment of a system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51677008,51377182,51707028,and 11647098)the Fundamental Research Funds of the Central Universities,China(Grant No.106112017CDJQJ158834)the State Key Development Program for Basic Research of China(Grant No.2014CB541602)
文摘The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this study focuses on the design of gradient coil of unilateral magnet.The unilateral MRI system is used to image the local area above the magnet.The current density distribution of the gradient coil cannot be used as a series of superconducting nuclear magnetic resonance gradient coils,because the region of interest(ROI)and the wiring area of the unilateral magnet are both cylindrical side arc surfaces.Therefore,the equivalent magnetic dipole method is used to design the gradient coil,and the algorithm is improved for the special case of the wiring area and the ROI,so the X and Y gradient coils are designed.Finally,a flexible printed circuit board(PCB)is used to fabricate the gradient coil,and the magnetic field distribution of the ROI is measured by a Gauss meter,and the measured results match with the simulation results.The gradient linearities of x and y coils are 2.82%and 3.56%,respectively,less than 5%of the commercial gradient coil requirement.
基金a project financed by Natural Science Fund of Education Department of Jiangsu Province (02KJB140008)
文摘In view of the application importance of resistance network in modern science and technology, this paper presents the basic structure of a three terminals ladder shaped resistance network, for which, to study in- depth the equivalent resistance, carry out network analysis by applying virtual current method and construct a model of two elements three orders differential equation. Based on different marginal conditions, two general adaptive rules for the three-terminal ladder shaped inlet resistance, as well as two ultimate rules for the equiva- lent resistance of three-terminal infinite ladder shaped were given.
文摘The electromagnetic field under applied AC and DC current in round and rectangular pipe was systematically investigated, then a concept of 'equivalent current density' was proposed for evaluating the inhomogeneous electromagnetic pinch force, and the mono-component removal efficiency and the overall removal efficiency of inclusion were formulated. It is founded that flat pipe is superior to round pipe for the electromagnetic removal of inclusion, and DC current can get a higher removal efficiency than A C current due to absence of skin phenomenon. Under usual condition, a removal efficiency of 52% for 10μm inclusion or more than 92% for 20μm inclusion can be achieved by imposing a current density of 3×106A/m2 in a flat pipe.
文摘An equivalent relationship between electro magnetic flowmeters (EMFs) and the Hall effect is discussed in principle and three equivalent conclusions about their measuring equations are derived. Thereby,the calibration using the ionic current (CUIC) is introduced to the calibration of EMFs in a special Hall effect system. A basic system with these equations is specially given and discussed for realizing the method. Two key points about CUIC are proved by a simple experiment.
文摘A new technique of eigen mode analysis, Method of Natural Orthogonal Components (MNOC) is used to analyze the ionospheric equivalent current systems obtained on the basis of magnetic data at six meridian magnetometer chains in the northern hemisphere during March 17 19, 1978. The results show that the whole current pattern for any given instant consists of a few eigen modes with different intensities. The first eigen mode exhibits a two cell current construction, characterizing the large scale magnetospheric convection and directly driven process, while the second eigen mode shows a concentrated westward electrojet at midnight sector, characterizing the substorm current wedge and the loading unloading process. The first mode consistently exists whenever during quiet periods or at substorms, and its intensity increases from the beginning of the growth phase of substorms, then quickly intensifies in the expansion phase, followed by a gradual decrease in the recovery phase. On the other hand, the intensity of the second mode remains to be near zero during both quiet time and the growth phase of substorms. Its rapid enhancement occurs in the expansion phase. These characteristics in the current patterns and the intensity variations coincide with the defined physical processes of the directly driven and loading unloading components.