In order to improve tracking accuracy when initial estimate is inaccurate or outliers exist,a bearings-only tracking approach called the robust range-parameterized cubature Kalman filter(RRPCKF)was proposed.Firstly,th...In order to improve tracking accuracy when initial estimate is inaccurate or outliers exist,a bearings-only tracking approach called the robust range-parameterized cubature Kalman filter(RRPCKF)was proposed.Firstly,the robust extremal rule based on the pollution distribution was introduced to the cubature Kalman filter(CKF)framework.The improved Turkey weight function was subsequently constructed to identify the outliers whose weights were reduced by establishing equivalent innovation covariance matrix in the CKF.Furthermore,the improved range-parameterize(RP)strategy which divides the filter into some weighted robust CKFs each with a different initial estimate was utilized to solve the fuzzy initial estimation problem efficiently.Simulations show that the result of the RRPCKF is more accurate and more robust whether outliers exist or not,whereas that of the conventional algorithms becomes distorted seriously when outliers appear.展开更多
A new approach called the robust structured total least squares(RSTLS) algorithm is described for solving location inaccuracy caused by outliers in the single-observer passive location. It is built within the weighted...A new approach called the robust structured total least squares(RSTLS) algorithm is described for solving location inaccuracy caused by outliers in the single-observer passive location. It is built within the weighted structured total least squares(WSTLS)framework and improved based on the robust estimation theory.Moreover, the improved Danish weight function is proposed according to the robust extremal function of the WSTLS, so that the new algorithm can detect outliers based on residuals and reduce the weights of outliers automatically. Finally, the inverse iteration method is discussed to deal with the RSTLS problem. Simulations show that when outliers appear, the result of the proposed algorithm is still accurate and robust, whereas that of the conventional algorithms is distorted seriously.展开更多
基金Projects(51377172,51577191) supported by the National Natural Science Foundation of China
文摘In order to improve tracking accuracy when initial estimate is inaccurate or outliers exist,a bearings-only tracking approach called the robust range-parameterized cubature Kalman filter(RRPCKF)was proposed.Firstly,the robust extremal rule based on the pollution distribution was introduced to the cubature Kalman filter(CKF)framework.The improved Turkey weight function was subsequently constructed to identify the outliers whose weights were reduced by establishing equivalent innovation covariance matrix in the CKF.Furthermore,the improved range-parameterize(RP)strategy which divides the filter into some weighted robust CKFs each with a different initial estimate was utilized to solve the fuzzy initial estimation problem efficiently.Simulations show that the result of the RRPCKF is more accurate and more robust whether outliers exist or not,whereas that of the conventional algorithms becomes distorted seriously when outliers appear.
基金supported by the National Natural Science Foundation of China(61202490)
文摘A new approach called the robust structured total least squares(RSTLS) algorithm is described for solving location inaccuracy caused by outliers in the single-observer passive location. It is built within the weighted structured total least squares(WSTLS)framework and improved based on the robust estimation theory.Moreover, the improved Danish weight function is proposed according to the robust extremal function of the WSTLS, so that the new algorithm can detect outliers based on residuals and reduce the weights of outliers automatically. Finally, the inverse iteration method is discussed to deal with the RSTLS problem. Simulations show that when outliers appear, the result of the proposed algorithm is still accurate and robust, whereas that of the conventional algorithms is distorted seriously.