A compact all-fiber polarization-maintaining Er:laser using a nonlinear amplifying loop mirror is reported. Fundamental single-pulse mode-locking operation can always self start, with a cavity round-trip decreased fro...A compact all-fiber polarization-maintaining Er:laser using a nonlinear amplifying loop mirror is reported. Fundamental single-pulse mode-locking operation can always self start, with a cavity round-trip decreased from ~ 4.7 m to~ 1.7 m. When the pulse repetition rate is 121.0328 MHz, output pulse is measured to have a center wavelength/3-d B spectral bandwidth/radio frequency signal to noise ratio(SNR)/pulse width of 1571.65 nm/18.70 nm/80 d B/477 fs, respectively. Besides, three states including the exponential growth, damping state, and steady state are investigated through the build-up process both experimentally and numerically. Excellent stability of this compact Er:laser is further evaluated,demonstrating that it can be an easy-fabrication maintenance-free ultrafast candidate for the scientific area of this kind.展开更多
We demonstrate a self-starting erbium fiber oscillator-amplifier system based on the nonlinear polarization rota- tion mode-locked mechanism. The direct output pulse from the amplifier is 47fs with an average power of...We demonstrate a self-starting erbium fiber oscillator-amplifier system based on the nonlinear polarization rota- tion mode-locked mechanism. The direct output pulse from the amplifier is 47fs with an average power of 1.22 W and a repetition rate of 50 MHz, corresponding to a pulse energy of 24 nJ. The full width at half-maximum of the spectrum of the output pulses is approximately 93nm at a central wavelength of 1572nm so that the transform- limited pulse duration is as short as 39 fs. Due to the imperfect dispersion compensation, we compress the pulses to 47fs in this experiment.展开更多
The compact super-fluorescent fiber source (SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced at...The compact super-fluorescent fiber source (SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced attenuation (RIA) self-compensating effect in SFS based on photo-bleaching was found and the general mathematic model of SFS output spectra variations was made. The radiation-induced background attenuation (RIBA) at the pump wavelength was identified to be the main cause of the total output power and spectra variations and the variations can then be compensated by active control of the pump power to enhance the self-compensating effect. With closed-loop feedback control of pump current, double-pass backward (DPB) configuration and spectrum re-shaping technology, an SFS prototype was made and tested. The mean-wavelength stability of about 87.4 ppm and output power instability of less than 5% were achieved under up to 200 krad (Si) gamma-ray irradiation.展开更多
Based on the host of tellurite glasses, the glass formation, preform manufacture, and fiber fabrication are described. The characterization of amplified spontaneous emission (ASE) from this newly fabricated single-mod...Based on the host of tellurite glasses, the glass formation, preform manufacture, and fiber fabrication are described. The characterization of amplified spontaneous emission (ASE) from this newly fabricated single-mode Er3+-doped tellurite fibers is also presented. When pumped at 980 nm, a very broad erbium ASE around 1.53 μm was observed. The variations of ASE with fiber length and pumping power are measured and discussed. The output of 2 mW from Er3+-doped tellurite fiber ASE source was obtained under the pump power of 660 mW.展开更多
Optical dispersive nonlinearities in Er-doped optical fiber are discussed and measured at the third window wavelength 1.55 μm for optical communications firstly. The experimental method, which is developed by us, is ...Optical dispersive nonlinearities in Er-doped optical fiber are discussed and measured at the third window wavelength 1.55 μm for optical communications firstly. The experimental method, which is developed by us, is based on dynamic scanning for fixed-point-interference (DSFPI) of two fiber beams. The real part and complex value of the third-order susceptibility at the wavelength are also obtained from the measured Kerr coefficient and nonlinear-absorption coefficient reported elsewhere.展开更多
It is proposed that a segment of Er doped fiber with a couple of fiber gratings on the ends may be used as a novel optical bistability device with low power and high speed. Operation and bistability threshold of devi...It is proposed that a segment of Er doped fiber with a couple of fiber gratings on the ends may be used as a novel optical bistability device with low power and high speed. Operation and bistability threshold of device are analysed in accordance with the distributed feedback couple mode theory and the nonlinear characteristic of Er doped fiber. It is shown that a nanoseconds microwatts bistable operation of a centimeter device is realizable under nowaday technological condition.展开更多
An all optical all fiber optical bistability operation has been realized in an all fiber cavity consisted with Er doped fiber and optical fiber loop mirrors. The experimental bistability threshold is consistent w...An all optical all fiber optical bistability operation has been realized in an all fiber cavity consisted with Er doped fiber and optical fiber loop mirrors. The experimental bistability threshold is consistent with the theory.展开更多
Optical absorptive nonlinearity in Er doped optical fiber has been discussed and measured at the window wavelength 1.55 μm for optical communications firstly. It is proposed that the mechanism of this absorptive...Optical absorptive nonlinearity in Er doped optical fiber has been discussed and measured at the window wavelength 1.55 μm for optical communications firstly. It is proposed that the mechanism of this absorptive nonlinearity is the induced absorption. The first order nonlinear absorptive coefficient and the imaginary part and the complex value of the third order susceptibility at that wavelength are obtained from the measured absorptive nonlinearity.展开更多
We demonstrate a white light fiber source based on Bismuth and Erbium co-doped fiber and a single 830nm laser diode pump. The light spectral intensity from 1100 to 1570nm is over -45dBm, which provide ~40dB dynamic ra...We demonstrate a white light fiber source based on Bismuth and Erbium co-doped fiber and a single 830nm laser diode pump. The light spectral intensity from 1100 to 1570nm is over -45dBm, which provide ~40dB dynamic range for an OSA based spectral measurement.展开更多
s:Under The nonlinear optics condition the all-fiber optical bistability operation has been realized in an all-fiber resonator consisted of Er-dope fiber and optical fiber couplers.The experimental bistability thresho...s:Under The nonlinear optics condition the all-fiber optical bistability operation has been realized in an all-fiber resonator consisted of Er-dope fiber and optical fiber couplers.The experimental bistability threshold is consistent with the theory.展开更多
The linear and nonlinear charecteristics of verious optical riber loop resonators have been processed uniformly using transmission matrix method. It is pointed that in nonlinear operation condition each of those optic...The linear and nonlinear charecteristics of verious optical riber loop resonators have been processed uniformly using transmission matrix method. It is pointed that in nonlinear operation condition each of those optical fiber loop resonators may be used to make an all-optical fiber bistabillty device.The configuration,charecterictics and threshold of verious Er-doped fiber loop bistability devices have been calculated,analysised, and compared, and the design principle of those devices has been given.展开更多
A balanced optical microwave phase detector(BOMPD) based on a 3 × 3 coupler is presented. This system was developed to extract ultra-low-jitter microwave signals from optical pulse trains emitted by mode-locked E...A balanced optical microwave phase detector(BOMPD) based on a 3 × 3 coupler is presented. This system was developed to extract ultra-low-jitter microwave signals from optical pulse trains emitted by mode-locked Er-fiber lasers, and synchronized microwave and laser systems. We demonstrate that the BOMPD achieves a precision of synchronization of less than 100 femtosecond of timing jitter. The experimental setup can be applied to the soft X-ray free-electron laser located on the campus of the Shanghai synchrotron radiation facility. A microwave signal with a 2.856 GHz frequency is extracted from a238 MHz mode-locked Er-laser, with an absolute timing jitter of 34 fs in the 10 Hz–10 MHz frequency offset range.In addition, the microwave and 238 MHz optical pulse signals are synchronized with a relative timing jitter of16 fs at the same frequency offset range.展开更多
In this paper, we adopt cloud computing in a specific scientific computing field for its virtualization, distribution and dynamic extendibility as follows: We obtain high-energy parabolic self-similar pulses by numeri...In this paper, we adopt cloud computing in a specific scientific computing field for its virtualization, distribution and dynamic extendibility as follows: We obtain high-energy parabolic self-similar pulses by numerical simulation using our non-distributed passively mode-locked Er-doped fiber laser model. For researching characteristics of these wave-breaking-free self-similar pulses, chirp of them must be extracted. We propose several time-frequency analysis methods adopted in chirp extraction of ultra-short optical pulses for the first time and discuss the advantages and disadvantages of them in this particular application.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61805282,11802339,and 11504420)the Opening Foundation of State Key Laboratory of High Performance Computing,China(Grant No.201601-02)+2 种基金the Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology,China(Grant No.GNJGJS03)the Opening Foundation of State Key Laboratory of Laser Interaction with Matter,China(Grant No.SKLLIM1702)the China Postdoctoral Innovation Science Foundation(Grant No.BX20180373)
文摘A compact all-fiber polarization-maintaining Er:laser using a nonlinear amplifying loop mirror is reported. Fundamental single-pulse mode-locking operation can always self start, with a cavity round-trip decreased from ~ 4.7 m to~ 1.7 m. When the pulse repetition rate is 121.0328 MHz, output pulse is measured to have a center wavelength/3-d B spectral bandwidth/radio frequency signal to noise ratio(SNR)/pulse width of 1571.65 nm/18.70 nm/80 d B/477 fs, respectively. Besides, three states including the exponential growth, damping state, and steady state are investigated through the build-up process both experimentally and numerically. Excellent stability of this compact Er:laser is further evaluated,demonstrating that it can be an easy-fabrication maintenance-free ultrafast candidate for the scientific area of this kind.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Science and Technology Project of Guangdong Province under Grant Nos 20148090903014,20158090920003,20168090917002 and20168090926004
文摘We demonstrate a self-starting erbium fiber oscillator-amplifier system based on the nonlinear polarization rota- tion mode-locked mechanism. The direct output pulse from the amplifier is 47fs with an average power of 1.22 W and a repetition rate of 50 MHz, corresponding to a pulse energy of 24 nJ. The full width at half-maximum of the spectrum of the output pulses is approximately 93nm at a central wavelength of 1572nm so that the transform- limited pulse duration is as short as 39 fs. Due to the imperfect dispersion compensation, we compress the pulses to 47fs in this experiment.
基金supported by the Special Fund for Development of National Major Scientific Instruments of China(Grant No.2013YQ04081504)the Program for Innovative Research Team in University,China(Grant No.IRT 1203)
文摘The compact super-fluorescent fiber source (SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced attenuation (RIA) self-compensating effect in SFS based on photo-bleaching was found and the general mathematic model of SFS output spectra variations was made. The radiation-induced background attenuation (RIBA) at the pump wavelength was identified to be the main cause of the total output power and spectra variations and the variations can then be compensated by active control of the pump power to enhance the self-compensating effect. With closed-loop feedback control of pump current, double-pass backward (DPB) configuration and spectrum re-shaping technology, an SFS prototype was made and tested. The mean-wavelength stability of about 87.4 ppm and output power instability of less than 5% were achieved under up to 200 krad (Si) gamma-ray irradiation.
基金The authors are grateful to the Rising-star Project of Shanghai Municipal Science and Technology Commission(No.04QMX1448)the Project of Optical Science and Technology of Shanghai(No.022261046)the National Natural Science Foundation of China(No.60207006)for the support of this project.
文摘Based on the host of tellurite glasses, the glass formation, preform manufacture, and fiber fabrication are described. The characterization of amplified spontaneous emission (ASE) from this newly fabricated single-mode Er3+-doped tellurite fibers is also presented. When pumped at 980 nm, a very broad erbium ASE around 1.53 μm was observed. The variations of ASE with fiber length and pumping power are measured and discussed. The output of 2 mW from Er3+-doped tellurite fiber ASE source was obtained under the pump power of 660 mW.
文摘Optical dispersive nonlinearities in Er-doped optical fiber are discussed and measured at the third window wavelength 1.55 μm for optical communications firstly. The experimental method, which is developed by us, is based on dynamic scanning for fixed-point-interference (DSFPI) of two fiber beams. The real part and complex value of the third-order susceptibility at the wavelength are also obtained from the measured Kerr coefficient and nonlinear-absorption coefficient reported elsewhere.
文摘It is proposed that a segment of Er doped fiber with a couple of fiber gratings on the ends may be used as a novel optical bistability device with low power and high speed. Operation and bistability threshold of device are analysed in accordance with the distributed feedback couple mode theory and the nonlinear characteristic of Er doped fiber. It is shown that a nanoseconds microwatts bistable operation of a centimeter device is realizable under nowaday technological condition.
文摘An all optical all fiber optical bistability operation has been realized in an all fiber cavity consisted with Er doped fiber and optical fiber loop mirrors. The experimental bistability threshold is consistent with the theory.
文摘Optical absorptive nonlinearity in Er doped optical fiber has been discussed and measured at the window wavelength 1.55 μm for optical communications firstly. It is proposed that the mechanism of this absorptive nonlinearity is the induced absorption. The first order nonlinear absorptive coefficient and the imaginary part and the complex value of the third order susceptibility at that wavelength are obtained from the measured absorptive nonlinearity.
文摘We demonstrate a white light fiber source based on Bismuth and Erbium co-doped fiber and a single 830nm laser diode pump. The light spectral intensity from 1100 to 1570nm is over -45dBm, which provide ~40dB dynamic range for an OSA based spectral measurement.
文摘s:Under The nonlinear optics condition the all-fiber optical bistability operation has been realized in an all-fiber resonator consisted of Er-dope fiber and optical fiber couplers.The experimental bistability threshold is consistent with the theory.
文摘The linear and nonlinear charecteristics of verious optical riber loop resonators have been processed uniformly using transmission matrix method. It is pointed that in nonlinear operation condition each of those optical fiber loop resonators may be used to make an all-optical fiber bistabillty device.The configuration,charecterictics and threshold of verious Er-doped fiber loop bistability devices have been calculated,analysised, and compared, and the design principle of those devices has been given.
基金supported by the National Natural Science Foundation of China(No.11175241)
文摘A balanced optical microwave phase detector(BOMPD) based on a 3 × 3 coupler is presented. This system was developed to extract ultra-low-jitter microwave signals from optical pulse trains emitted by mode-locked Er-fiber lasers, and synchronized microwave and laser systems. We demonstrate that the BOMPD achieves a precision of synchronization of less than 100 femtosecond of timing jitter. The experimental setup can be applied to the soft X-ray free-electron laser located on the campus of the Shanghai synchrotron radiation facility. A microwave signal with a 2.856 GHz frequency is extracted from a238 MHz mode-locked Er-laser, with an absolute timing jitter of 34 fs in the 10 Hz–10 MHz frequency offset range.In addition, the microwave and 238 MHz optical pulse signals are synchronized with a relative timing jitter of16 fs at the same frequency offset range.
基金supported by National Natural Science Foundation of China and Scientific Forefront and Interdisciplinary Innovation Project, Jilin University under Grants No. 60372061,200903296
文摘In this paper, we adopt cloud computing in a specific scientific computing field for its virtualization, distribution and dynamic extendibility as follows: We obtain high-energy parabolic self-similar pulses by numerical simulation using our non-distributed passively mode-locked Er-doped fiber laser model. For researching characteristics of these wave-breaking-free self-similar pulses, chirp of them must be extracted. We propose several time-frequency analysis methods adopted in chirp extraction of ultra-short optical pulses for the first time and discuss the advantages and disadvantages of them in this particular application.