Y2O3:Er^3+ films were prepared by a simple sol-gel process. The structural properties of Y2O3:Er^3+ films were characterized with X-ray diffraction, Fourier transform infrared spectroscopy and field emission scann...Y2O3:Er^3+ films were prepared by a simple sol-gel process. The structural properties of Y2O3:Er^3+ films were characterized with X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The results indicated that the Y2O3:Er^3+ films might have high upconversion efficiency because of their low vibrational energy. Under 785 and 980 nm laser excitation, the samples showed green (^2H11/2→^4I15/2, ^4S3/2→^4I15/2) and red (^4F9/2→^4I15/2) upconversion emissions. The upconversion mechanisms were studied in detail through laser power dependence. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The cross relaxation process in Er^3+ was also investigated.展开更多
The cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behaviors of Er(Ⅲ) and Ni(Ⅱ) in LiClO 4 DMSO(dimethylsufoxide) system on Pt and Cu electrodes. Experimental results indica...The cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behaviors of Er(Ⅲ) and Ni(Ⅱ) in LiClO 4 DMSO(dimethylsufoxide) system on Pt and Cu electrodes. Experimental results indicated that the reduction of Er(Ⅲ) to Er and Ni(Ⅱ) to Ni were irreversible in one step on Pt and Cu electrodes. The diffusion coefficient and electron transfer coefficient of Er(Ⅲ) in 0.01 mol·L -1 ErCl 3 -0.1 mol·L -1 LiClO 4 DMSO system at 303K were 1.47×10 -10 m 2·s -1 and 0.108 respectively, and the diffusion coefficient and electron transfer coefficient of Ni(Ⅱ) in 0.01 mol·L -1 NiCl 2-0.1 mol·L -1 LiClO 4 DMSO system at 303K were 3.38×10 -10 m 2·s -1 and 0.160 respectively. The homogeneous, strong adhesive Er Ni alloy films with metallic lu- stre was prepared by potentiostatic electrolysis on Cu electrode in ErCl 3 NiCl 2 LiClO 4 DMSO system at -1.90~ -2.55 V (vs SCE).展开更多
This paper reports that stoichiometric, amorphous, and uniform Er2O3 films are deposited on Si(001) substrates by a radio frequency magnetron sputtering technique. Ellipsometry measurements show that the refractive ...This paper reports that stoichiometric, amorphous, and uniform Er2O3 films are deposited on Si(001) substrates by a radio frequency magnetron sputtering technique. Ellipsometry measurements show that the refractive index of the Er2O3 films is very close to that of a single layer antireflection coating for a solar cell with an air surrounding medium during its working wavelength. For the 90-nm-thick film, the reflectance has a minimum lower than 3% at the wavelength of 600 nm and the weighted average refiectances (400-1000 nm) is 11.6%. The obtained characteristics indicate that Er2O3 films could be a promising candidate for antireflection coatings in solar cells.展开更多
Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behavior of Fe(Ⅱ) and Er(Ⅲ) in a LiClO 4 DMSO(dimethylsufoxide) system at Pt and Cu electrodes. Experimental results indicate t...Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behavior of Fe(Ⅱ) and Er(Ⅲ) in a LiClO 4 DMSO(dimethylsufoxide) system at Pt and Cu electrodes. Experimental results indicate that the reductions of Fe(Ⅱ) to Fe(0) and Er(Ⅲ) to Er(0) were irreversible at Pt and Cu electrodes. The diffusion coefficient and the electron transfer coefficient of Fe(Ⅱ) in a 0 01 mol/L FeCl 2 0 1 mol/L LiClO 4 DMSO system at 303 K were 1 70×10 -10 m 2/s and 0 08 respectively, the diffusion coefficient and the electron transfer coefficient of Er(Ⅲ) in a 0 01 mol/L ErCl 3 0 1mol/L LiClO 4 DMSO system at 303 K were 1 47×10 -10 m 2/s and 0 108 respectively. The homogeneous, strong adhesive Er Fe alloy films containing Er of 31 39%-42 12% in mass fraction with metallic lustre were prepared by potentiostatic electrolysis on a Cu electrode in a ErCl 3 FeCl 2 LiClO 4 DMSO system at -1 75--2 50 V( vs . SCE).展开更多
Cyclic electrodeposition was used to investigate the preparation of Er-Co-Bi alloy thin film in DMSO system. Experimental results indicate that Er-Co-Bi alloy thin film containing 14.83 %32.65 % Er is prepared from 0....Cyclic electrodeposition was used to investigate the preparation of Er-Co-Bi alloy thin film in DMSO system. Experimental results indicate that Er-Co-Bi alloy thin film containing 14.83 %32.65 % Er is prepared from 0.1 mol/L ErCl3+0.1 mol/L CoCl2+0.1 mol/L Bi(NO3)3+0.1 mol/L LiCl +DMSO system by cyclic electrodeposition on Cu substrate. The optimum cyclic potential of electrodeposition is that upper potential is within a potential range from -0.50 V to -1.00 V and lower potential is within a potential range from -2.00 V to )-2.60 V.) The surface of alloy thin film observed by scanning electron microscope is black, adhesive and has metallic luster. The film is amorphous proved by the X-ray diffractometry.展开更多
The nonuniform Yb-Er Codoped Al2O3 films were prepared on SiO2/Si substrates using a medium frequency magnetron sputtering system. Two asymmetry targets in the system were introduced to realize the nonuniform dopant. ...The nonuniform Yb-Er Codoped Al2O3 films were prepared on SiO2/Si substrates using a medium frequency magnetron sputtering system. Two asymmetry targets in the system were introduced to realize the nonuniform dopant. Some curves of Photoluminescence (PL) peak intensity were obtained by adjusting the deposition parameters, such as, the pillar number of erbium and ytterbium in the mixed target and the distance between a sample table and targets. Typically, the curve of PL peak intensity against the offset distance was approximately linear. The ratio of the PL intensity at the two ends of the same sample was 12.6 and the slope was 71.83/mm when the pillar numbers of the erbium and ytterbium in the mixed target are 5 and 60, respectively, and the distance between targets and the sample table is 2.9 cm.展开更多
基金supported by the grants from the Nature Science Foundation of Zhejiang Province (Y406309)Research Program from Science and Technology Bureau of Jinhua City (2008-1-151)
文摘Y2O3:Er^3+ films were prepared by a simple sol-gel process. The structural properties of Y2O3:Er^3+ films were characterized with X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The results indicated that the Y2O3:Er^3+ films might have high upconversion efficiency because of their low vibrational energy. Under 785 and 980 nm laser excitation, the samples showed green (^2H11/2→^4I15/2, ^4S3/2→^4I15/2) and red (^4F9/2→^4I15/2) upconversion emissions. The upconversion mechanisms were studied in detail through laser power dependence. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The cross relaxation process in Er^3+ was also investigated.
文摘The cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behaviors of Er(Ⅲ) and Ni(Ⅱ) in LiClO 4 DMSO(dimethylsufoxide) system on Pt and Cu electrodes. Experimental results indicated that the reduction of Er(Ⅲ) to Er and Ni(Ⅱ) to Ni were irreversible in one step on Pt and Cu electrodes. The diffusion coefficient and electron transfer coefficient of Er(Ⅲ) in 0.01 mol·L -1 ErCl 3 -0.1 mol·L -1 LiClO 4 DMSO system at 303K were 1.47×10 -10 m 2·s -1 and 0.108 respectively, and the diffusion coefficient and electron transfer coefficient of Ni(Ⅱ) in 0.01 mol·L -1 NiCl 2-0.1 mol·L -1 LiClO 4 DMSO system at 303K were 3.38×10 -10 m 2·s -1 and 0.160 respectively. The homogeneous, strong adhesive Er Ni alloy films with metallic lu- stre was prepared by potentiostatic electrolysis on Cu electrode in ErCl 3 NiCl 2 LiClO 4 DMSO system at -1.90~ -2.55 V (vs SCE).
基金supported by the Special Project of Shanghai Nano-technology (Grant No.0852nm02400)the National Natural Science Foundation of China (Grant Nos.10804072 and 60806031)the Key Fundamental Project of Shanghai (GrantNo.08JC1410400)
文摘This paper reports that stoichiometric, amorphous, and uniform Er2O3 films are deposited on Si(001) substrates by a radio frequency magnetron sputtering technique. Ellipsometry measurements show that the refractive index of the Er2O3 films is very close to that of a single layer antireflection coating for a solar cell with an air surrounding medium during its working wavelength. For the 90-nm-thick film, the reflectance has a minimum lower than 3% at the wavelength of 600 nm and the weighted average refiectances (400-1000 nm) is 11.6%. The obtained characteristics indicate that Er2O3 films could be a promising candidate for antireflection coatings in solar cells.
基金Supported by the Thousand- Hundred- Ten Talent Project Foundation of Guangdong Province Education Office(No.0 0 - 0 79- 4 2 10 0 5 ) and State Key L ab of Rare Material Chem istry and Applications
文摘Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behavior of Fe(Ⅱ) and Er(Ⅲ) in a LiClO 4 DMSO(dimethylsufoxide) system at Pt and Cu electrodes. Experimental results indicate that the reductions of Fe(Ⅱ) to Fe(0) and Er(Ⅲ) to Er(0) were irreversible at Pt and Cu electrodes. The diffusion coefficient and the electron transfer coefficient of Fe(Ⅱ) in a 0 01 mol/L FeCl 2 0 1 mol/L LiClO 4 DMSO system at 303 K were 1 70×10 -10 m 2/s and 0 08 respectively, the diffusion coefficient and the electron transfer coefficient of Er(Ⅲ) in a 0 01 mol/L ErCl 3 0 1mol/L LiClO 4 DMSO system at 303 K were 1 47×10 -10 m 2/s and 0 108 respectively. The homogeneous, strong adhesive Er Fe alloy films containing Er of 31 39%-42 12% in mass fraction with metallic lustre were prepared by potentiostatic electrolysis on a Cu electrode in a ErCl 3 FeCl 2 LiClO 4 DMSO system at -1 75--2 50 V( vs . SCE).
文摘Cyclic electrodeposition was used to investigate the preparation of Er-Co-Bi alloy thin film in DMSO system. Experimental results indicate that Er-Co-Bi alloy thin film containing 14.83 %32.65 % Er is prepared from 0.1 mol/L ErCl3+0.1 mol/L CoCl2+0.1 mol/L Bi(NO3)3+0.1 mol/L LiCl +DMSO system by cyclic electrodeposition on Cu substrate. The optimum cyclic potential of electrodeposition is that upper potential is within a potential range from -0.50 V to -1.00 V and lower potential is within a potential range from -2.00 V to )-2.60 V.) The surface of alloy thin film observed by scanning electron microscope is black, adhesive and has metallic luster. The film is amorphous proved by the X-ray diffractometry.
基金Project supported by the National Natural Science Foundation of China (60477023)the Natural Science Foundation of Science and Tech-nology Commission of Liaoning Province (20062137)
文摘The nonuniform Yb-Er Codoped Al2O3 films were prepared on SiO2/Si substrates using a medium frequency magnetron sputtering system. Two asymmetry targets in the system were introduced to realize the nonuniform dopant. Some curves of Photoluminescence (PL) peak intensity were obtained by adjusting the deposition parameters, such as, the pillar number of erbium and ytterbium in the mixed target and the distance between a sample table and targets. Typically, the curve of PL peak intensity against the offset distance was approximately linear. The ratio of the PL intensity at the two ends of the same sample was 12.6 and the slope was 71.83/mm when the pillar numbers of the erbium and ytterbium in the mixed target are 5 and 60, respectively, and the distance between targets and the sample table is 2.9 cm.