期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Er^(3+)-Yb^(3+) Co-Doped Fiber Ring and Line Laser
1
作者 向望华 朱向宇 +1 位作者 裴新 张贵忠 《Transactions of Tianjin University》 EI CAS 2004年第2期102-104,共3页
Er3+-Yb3+ co-doped fiber of 2 m long is used as the laser gain medium. Two fiber lasers with different structures have been set up, one is the line cavity fiber laser with the dielectric mirror being replaced by an al... Er3+-Yb3+ co-doped fiber of 2 m long is used as the laser gain medium. Two fiber lasers with different structures have been set up, one is the line cavity fiber laser with the dielectric mirror being replaced by an all-fiber reflecting mirror,the other is the ring cavity all-fiber laser. Both set-ups have achieved lasing operation at the wavelength of 1.53 μm. Pumped by the 1 064 nm light from all-solid-state Nd ∶YAG laser, the two fiber lasers at 1 530 nm are operational. Their output powers are 7.8 mW and 2 mW with 130 mW and 160 mW pump powers. 展开更多
关键词 Er^(3+)-Yb^(3+) co-doped fiber laser line cavity ring cavity all-fiber reflecting mirror
下载PDF
All-fiber Based Er^(3+)∶Yb^(3+) Co-doped Fiber Laser
2
作者 LIU Yang WANG Xiao-bing +2 位作者 SUN Bin CHENG Yong WANG Li-jun 《Semiconductor Photonics and Technology》 CAS 2006年第4期242-244,共3页
An all-fiber based Er~ 3+ ∶Yb~ 3+ co-doped double clad fiber laser operating at 1550nm is demonstrated. By using 9m long Er~ 3+ ∶Yb~ 3+ co-doped fiber(EYDF) as the gain medium, and using a pair of fiber Bragg gratin... An all-fiber based Er~ 3+ ∶Yb~ 3+ co-doped double clad fiber laser operating at 1550nm is demonstrated. By using 9m long Er~ 3+ ∶Yb~ 3+ co-doped fiber(EYDF) as the gain medium, and using a pair of fiber Bragg gratings as wavelength filters, the line-width of the output laser is as narrow as 0.2nm and the output power is more than 6mW. The fluorescent effect of the laser before its emission is also studied. And it is found that the Er~ 3+ ∶Yb~ 3+ co-doped double-clad fiber laser also exhibits a high gain for Yb~ 3+ transition near 1080nm. 展开更多
关键词 Er^3+∶Yb^3+co-doped fiber fiber laser fiber Bragg grating Fluorescent effect
下载PDF
Mode-locked fiber lasers at 1064 and 910 nm wavelengths using Nd^(3+)-doped silica fiber
3
作者 He'nan Shen Xilong Zhao +9 位作者 Fei Yu Yazhou Wang Yafei Wang Yan Sun Shikai Wang Yinggang Chen Zhongqing Jia Ruizhan Zhai Chunlei Yu Lili Hu 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第9期102-107,共6页
Mode-locked lasing operations at 1064 and 910 nm wavelengths are demonstrated,respectively,in two all-fiber laser oscillators using our homemade Nd^(3+)-doped silica fiber(NDF)as the gain medium.The Al3+/Nd^(3+)co-dop... Mode-locked lasing operations at 1064 and 910 nm wavelengths are demonstrated,respectively,in two all-fiber laser oscillators using our homemade Nd^(3+)-doped silica fiber(NDF)as the gain medium.The Al3+/Nd^(3+)co-doped silica core glass was fabricated by the modified sol-gel method with 18,300×10^(-6) Nd^(3+)doping concentration.The NDF drawn by the rodin-tube method has a core of 4μm in diameter and a numerical aperture(NA)of 0.14.At 1064 nm,we measure an average laser output power of 18mWwith a pulse duration of 5.75 ps,a pulse energy of 1.14 nJ,and a slope efficiency of 7.2%.Using the same NDF gain fiber of a different length,a maximum average laser output power is 3.1 mW at 910 nm with a pulse duration of 877 ns,a pulse energy of 2.7 nJ,and a slope efficiency of 1.44%. 展开更多
关键词 all-normal dispersion Nd3+-doped fiber filter bandwidth mode-locked fiber laser
原文传递
Research on Infrared Emissivity and Laser Reflectivity of Sn_(1−x)Er_(x)O_(2)Micro/Nanofibers Based on First-Principles 被引量:1
4
作者 Yuanjia Xia Fang Zhao +2 位作者 Zhizun Li Zhaogang Cheng Jianwei Hu 《Journal of Renewable Materials》 SCIE EI 2023年第2期921-936,共16页
Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target produc... Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target products were characterized by thermogravimetric analyzer,X-ray diffrotometer,fourier transform infrared spectrometer,scanning electron microscope,spectrophotometer and infrared emissivity tester,and the effects of Er^(3+)doping on its infrared and laser emissivity were studied.At the same time,the Sn_(1−x)Er_(x)O_(2)(x=0%,16%)doping models were constructed based on the first principles of density functional theory,and the related optoelectronic properties such as their energy band structure,density of states,reflectivity and dielectric constant were analyzed,and further explained the mechanism of Er^(3+)doping on SnO_(2)infrared emissivity and laser absorption from the point of electronic structure.The results showed that after calcination at 600℃,single rutile type SnO_(2)was formed,and the crystal structure was not changed by doping Er^(3+).The calcined products showed good fiber morphology,and the average fiber diameter was 402 nm.The infrared emissivity and resistivity of the samples both decreased first and then increased with the increase of Er^(3+)doping amount.When x=16%,the infrared emis-sivity of the sample was at least 0.71;and Er^(3+)doping can effectively reduce the reflectivity of SnO_(2)at 1.06μm and 1.55μm,when x=16%,its reflectivity at 1.06μm and 1.55μm are 50.5%and 40%,respectively,when x=24%,the reflectivity at 1.06μm and 1.55μm wavelengths are 47.3%and 42.1%,respectively.At the same time,the change of carrier concentration and electron transition before and after Er^(3+)doping were described by first-principle calculation,and the regulation mechanism of infrared emissivity and laser reflectivity was explained.This study provides a certain experimental and theoretical basis for the development of a single-type,light-weight and easily prepared infrared and laser compatible-stealth material. 展开更多
关键词 Micro/nano fibers Er^(3+)doping SnO_(2) laser and infrared compatible stealth material
下载PDF
Multiphoton process and optical amplification in Er^(3+)-Yb^(3+)-doped fiber pumped by Ti:Al_2O_3 tunable laser at 980-nm band
5
作者 明海 孙晓泉 +5 位作者 刘宇 董晓鹏 杨宝 谢建平 张运生 耿玉珍 《Chinese Science Bulletin》 SCIE EI CAS 1995年第22期1883-1887,共5页
The .Er<sup>3+</sup>-Yb<sup>3+</sup>-doped fiber has a broadened absorption spectrum, which means the pumping sources can work efficiently from 810 to 1100nm. Among them 980nm is the maximum.ab... The .Er<sup>3+</sup>-Yb<sup>3+</sup>-doped fiber has a broadened absorption spectrum, which means the pumping sources can work efficiently from 810 to 1100nm. Among them 980nm is the maximum.absorption (10 dB/km) wavelength. By energy transferring and multiphoton process, the visible and ultraviolet radiation occurs when the Er<sup>3+</sup>-Yb<sup>3+</sup>-doped fiber is pumped by the laser at 980-nm band. Further researches on the mechanism of the fluorescence of Er<sup>3+</sup>-Yb<sup>3+</sup>-doped silica fiber pumped by Ti: A1<sub>2</sub>O<sub>3</sub> tunable laser at 980-nm band are helpful 展开更多
关键词 MULTIPHOTON process optical amplification Ti:AI2O3 laser Er3+-Yb3+-doped fiber.
原文传递
3.6 W compact all-fiber Pr3+-doped green laser at 521 nm 被引量:6
6
作者 Jinhai Zou Jinfen Hong +8 位作者 Zhuang Zhao Qingyuan Li Qiujun Ruan Hang Wang Yikun Bu Xianchao Guan Min Zhou Zhiyong Feng Zhengqian Luo 《Advanced Photonics》 SCIE EI CAS CSCD 2022年第5期6-14,共9页
Green semiconductor lasers are still undeveloped,so high-power green lasers have heavily relied on nonlinear frequency conversion of near-infrared lasers,precluding compact and low-cost green laser systems.Here,we rep... Green semiconductor lasers are still undeveloped,so high-power green lasers have heavily relied on nonlinear frequency conversion of near-infrared lasers,precluding compact and low-cost green laser systems.Here,we report the first Watt-level all-fiber CW Pr3t-doped laser operating directly in the green spectral region,addressing the aforementioned difficulties.The compact all-fiber laser consists of a double-clad Pr3t-doped fluoride fiber,two homemade fiber dichroic mirrors at visible wavelengths,and a 443-nm fiber-pigtailed pump source.Benefitting from>10 MW∕cm2 high damage intensity of our designed fiber dielectric mirror,the green laser can stably deliver 3.62-W of continuous-wave power at∼521 nm with a slope efficiency of 20.9%.To the best of our knowledge,this is the largest output power directly from green fiber lasers,which is one order higher than previously reported.Moreover,these green all-fiber laser designs are optimized by using experiments and numerical simulations.Numerical results are in excellent agreement with our experimental results and show that the optimal gain fiber length,output mirror reflectivity,and doping level should be considered to obtain higher power and efficiency.This work may pave a path toward compact high-power green all-fiber lasers for applications in biomedicine,laser display,underwater detection,and spectroscopy. 展开更多
关键词 fiber laser high power Pr3+-doped fiber green light
原文传递
机械感生长周期光纤光栅的可调谐环形光纤激光器 被引量:4
7
作者 姜明顺 冯德军 隋青美 《光学精密工程》 EI CAS CSCD 北大核心 2010年第2期311-316,共6页
将采用机械感生法写制的长周期光纤光栅(MLPFG)串入环形腔中,设计了一种新颖的L波段可调谐环形掺铒光纤激光器(EDFL)。抽运光源为980nm半导体激光器,使用掺铒浓度为5×10-4,长度为12m的铒纤作为增益介质,通过调整待写制光纤与周期... 将采用机械感生法写制的长周期光纤光栅(MLPFG)串入环形腔中,设计了一种新颖的L波段可调谐环形掺铒光纤激光器(EDFL)。抽运光源为980nm半导体激光器,使用掺铒浓度为5×10-4,长度为12m的铒纤作为增益介质,通过调整待写制光纤与周期性压力槽之间的夹角,改变MLPFG的写制周期,调谐MLPFG透射谱,进而影响环形腔增益最高点,光纤激光器波长可调谐范围可达42nm(1562.465~1604.280nm),激光光谱3dB带宽<0.04nm,20dB带宽<0.08nm,边模抑制比>45dB。长时间观测表明,激光功率稳定性优于0.2dBm。实验显示,该光纤激光器具有带宽较宽,线宽较窄及性能稳定等特点。 展开更多
关键词 激光技术 掺铒光纤激光器(edfl) 波长调谐 机械感生长周期光纤光栅
下载PDF
Generation of 100 nJ pulse,1 W average power at 2μm from an intermode beating mode-locked all-fiber laser
8
作者 Jiaji Zhang Duanduan Wu +2 位作者 Ruwei Zhao Rongping Wang Shixun Dai 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2019年第4期50-55,共6页
We report on the investigation of intermode beating mode-locked(IBML)pulse generation in a simple all-fiber Tm^3+-doped double clad fiber laser(TDFL).This IBML TDFL is implemented by matching longitudinal-mode frequen... We report on the investigation of intermode beating mode-locked(IBML)pulse generation in a simple all-fiber Tm^3+-doped double clad fiber laser(TDFL).This IBML TDFL is implemented by matching longitudinal-mode frequency between 793 nm laser and TDFL without extra mode locker.The central wavelength of 1983 nm,the fundamental pulse frequency of 9.6 MHz and the signal-to-noise ratio(SNR)of>50 dB are achieved in this IBML TDFL.With laser cavity optimization,the IBML TDFL can finally generate an average output power of 1.03 W with corresponding pulse energy of 107 nJ.These results can provide an easily accessible way to develop compact large-energy,highpower TDFLs. 展开更多
关键词 average output power intermode beating mode-locking Tm^3+-doped double clad fiber laser pulse energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部