It is crucial to study the effect of radiation on the fiber amplifier devices. In the present paper, the Erbium-ytterbium co-doped fiber amplifier (EYDFA) has been irradiated by a neutron beam of different doses for v...It is crucial to study the effect of radiation on the fiber amplifier devices. In the present paper, the Erbium-ytterbium co-doped fiber amplifier (EYDFA) has been irradiated by a neutron beam of different doses for various exposure times from an Am-241/Be-9 neutron source. The gain and noise figure of the EYDFA have been calculated theoretically and recorded after and before the irradiation to test its performance under the effect of irradiation. In order to show the enhancement in the gain of the fiber amplifier devices, a comparison between the gain of the irradiated EYDFA and Erbium doped Fiber amplifier (EDFA) has been carried out. The calculated results by the proposed model are in good agreement with the experimental ones. It indicates that the gain of EYDFA deteriorates after being irradiated by a neutron dose. Moreover, the gain of irradiated EYDFA has been reduced to 13.8 dB at a dose of 720 Gy.展开更多
Based on propagation-rate equations, the influence of different input pulse durations on the properties of Er^3+/Yb^3+ co-doped double-clad fiber amplifier at dynamic equilibrium was analyzed. The change characteris...Based on propagation-rate equations, the influence of different input pulse durations on the properties of Er^3+/Yb^3+ co-doped double-clad fiber amplifier at dynamic equilibrium was analyzed. The change characteristic of output power sag with pulse duration and repetition rate was shown. Whether single or multichannel input pulses are amplified, the shorter the input pulse duration is, the smaller the power sags of output pulse will be. At low repetition rate, upper gain values(Gupper) of gain swing are almost the same for different input pulse durations, which tend to the small signal gain, but lower gain value(Glower) of short input pulse is larger than that of long input pulse. At highrepetition rate, lower gain value(Glower) approaches to upper gain value(Glower).展开更多
In this paper, Er/Yb co-doped fiber amplifiers(EYDFAs) with an Yb-band fiber Bragg grating(FBG) at the pump end to improve the performance of the amplifier is systematically studied. The influence of the reflectivity ...In this paper, Er/Yb co-doped fiber amplifiers(EYDFAs) with an Yb-band fiber Bragg grating(FBG) at the pump end to improve the performance of the amplifier is systematically studied. The influence of the reflectivity and center wavelength of the FBG along with the gain-fiber length on the performance of an EYDFA are numerically analyzed. The results show that the wavelength of the FBG has critical influence on the efficiency of the EYDFA,whereas the requirement to its reflectivity is relaxed. It is an effective and promising way to improve the efficiency of a high-power pumped EYDFA by introducing a suitable Yb-band FBG at the pump end. Based on the analysis of the underlying principles, suggestions for the practical design and possible further improvement strategies are also proposed.展开更多
A new '(?)' type of wideband erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with medium thin film filter is proposed, Average gain about 15.5dB between 1530nm and 1570nm with gain dif...A new '(?)' type of wideband erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with medium thin film filter is proposed, Average gain about 15.5dB between 1530nm and 1570nm with gain difference of below 2 dB is obtained.展开更多
In this Letter,the optical amplification characteristics of the home-made Bi/P co-doped silica fiber were systematically explored in the range of 1270–1360 nm.The maximum gain of 24.6 dB was obtained in the single-pa...In this Letter,the optical amplification characteristics of the home-made Bi/P co-doped silica fiber were systematically explored in the range of 1270–1360 nm.The maximum gain of 24.6 dB was obtained in the single-pass amplification device,and then improved to 38.3 dB in the double-pass amplification device for-30 dBm signal power.In addition,we simultaneously investigated the laser performance of the fiber with the linear cavity.A slope efficiency of 16.4%at~1313 nm was obtained with a maximum output power of about 133 mW under the input pump power of 869 mW at 1240 nm.As far as we know,it is the first laser reported based on the bismuth-doped fiber in China.展开更多
We designed and evaluated a fluoride-based high concentration erbium/ cerium co-doped fiber amplifier. It is suitable for Metropolitan Area Networks due to faster transient, flatter (unfiltered) gain, smaller footprin...We designed and evaluated a fluoride-based high concentration erbium/ cerium co-doped fiber amplifier. It is suitable for Metropolitan Area Networks due to faster transient, flatter (unfiltered) gain, smaller footprint and gain excursion than its silica-based counterpart.展开更多
Targeting the huge unused bandwidth(BW)of modem telecommunication networks,Bi/Er co-doped silica optical fibers(BEDFs)have been proposed and developed for ultra-broadband,high-gain optical amplifiers covering the ...Targeting the huge unused bandwidth(BW)of modem telecommunication networks,Bi/Er co-doped silica optical fibers(BEDFs)have been proposed and developed for ultra-broadband,high-gain optical amplifiers covering the 1150-1700 nm wavelength range.Ultrabroadband luminescence has been demonstrated in both BEDFs and bismuth/erbium/ytterbium co-doped optical fibers(BEYDFs)fabricated with the modified chemical vapor deposition(MCVD)and in situ doping techniques.Several novel and sophisticated techniques have been developed for the fabrication and characterization of the new active fibers.For controlling the performance of the active fibers,post-treatment processes using high temperature,γ-radiation,and laser light have been introduced.Although many fundamental scientific and technological issues and challenges still remain,several photonic applications,such as fiber sensing,fiber gratings,fiber amplification,fiber lasers,etc.,have already been demonstrated.展开更多
Erbium ytterbium co-doped super-fluorescent fiber source (EYD-SFS) has been simulated by a theoret- ical model based on rate equations and power transfer equations. The output performances of four basic structures o...Erbium ytterbium co-doped super-fluorescent fiber source (EYD-SFS) has been simulated by a theoret- ical model based on rate equations and power transfer equations. The output performances of four basic structures of EYD-SFS have been expressed, and it indicated that the DPF structure is a preferable structure. The dependence of output power, mean wavelength and bandwidth stability on the pump fiber length and the concentration of Er3+ and Yb3+ have also been studied. The results indicated with a proper doping concentration of Er3+ and Yb3+ of 6.0 × 10^26 ions/m3 and 1.0 × 10^27 ions/m3, the optimal gain fiber length is 3.6 cm. In this condition, good performances of DPF structure of EYD-SFS have been achieved.展开更多
Se-based chalcohalide glass of 50GeSe2-25In2Se3-25CsI was prepared. The thermal and optical characterizations revealed that this host was thermally and optically superior for practical applications. Strong emission ce...Se-based chalcohalide glass of 50GeSe2-25In2Se3-25CsI was prepared. The thermal and optical characterizations revealed that this host was thermally and optically superior for practical applications. Strong emission centered at 1.22μm was observed in all Tm3+ sin- gle-doped, Tm3+/Ho3+ and Tm3+/Er3+ co-doped samples with an excitation of 808 nm wavelength. The emission was attributed to the Tm3+: 3Hs-→3H6 transition. The co-doping of Ho3+ or Er3+ largely broadened the width and slightly strengthened the intensity of the 1.22 gm emis- sion. The possible energy transfer processes and luminescence kinetics were figured. In addition, its potential application as the host material for novel optical amplifiers was discussed.展开更多
To overcome Yb lasing,a kilowatt-level 1535 nm fiber laser is utilized to in-band pump an Er:Yb co-doped fiber(EYDF)amplifier.The output power of a 301 W narrow-linewidth EYDF amplifier operating at 1585 nm,with 3 dB ...To overcome Yb lasing,a kilowatt-level 1535 nm fiber laser is utilized to in-band pump an Er:Yb co-doped fiber(EYDF)amplifier.The output power of a 301 W narrow-linewidth EYDF amplifier operating at 1585 nm,with 3 dB bandwidth of 150 pm and M^(2)<1.4,is experimentally demonstrated.To the best of our knowledge,it is the highest output power achieved in L-band narrow-linewidth fiber amplifiers with good beam quality.Theoretically,a new ion transition behavior among energy levels for in-band pumping EYDF is uncovered,and a spatial-mode-resolved nonlinearityassisted theoretical model is developed to understand its internal dynamics.Numerical simulations reveal that the reduction in slope efficiency is significantly related to excited-state absorption(ESA).ESA has a nonlinear hindering effect on power scaling.It can drastically lower the pump absorption and slope efficiency with increasing pump power for in-band pumped EYDF amplifiers.Meanwhile,optimized approaches are proposed to improve its power to the kilowatt level via in-band pumping.展开更多
We report the design and analysis of a rod-type photonic crystal fiber with Er-Yb co-doped for the high power 1.5-μm band amplifier.The fiber structure is designed to be the 120-μm extreme large core diameter,300-μ...We report the design and analysis of a rod-type photonic crystal fiber with Er-Yb co-doped for the high power 1.5-μm band amplifier.The fiber structure is designed to be the 120-μm extreme large core diameter,300-μm inner cladding diameter,and 1.5-mm outer cladding diameter that ensure the single mode output during high power amplification.Both the continuous wave(CW) and pulsed amplification characteristics are analyzed based on the exact modeling and simulation under the designed geometry.The 4-mJ pulse energy and 400-kW peak power are obtained in theory,so the 1.5-μm band amplifier that achieves milojoule level pulse energy meanwhile keeping single mode is firstly designed.展开更多
文摘It is crucial to study the effect of radiation on the fiber amplifier devices. In the present paper, the Erbium-ytterbium co-doped fiber amplifier (EYDFA) has been irradiated by a neutron beam of different doses for various exposure times from an Am-241/Be-9 neutron source. The gain and noise figure of the EYDFA have been calculated theoretically and recorded after and before the irradiation to test its performance under the effect of irradiation. In order to show the enhancement in the gain of the fiber amplifier devices, a comparison between the gain of the irradiated EYDFA and Erbium doped Fiber amplifier (EDFA) has been carried out. The calculated results by the proposed model are in good agreement with the experimental ones. It indicates that the gain of EYDFA deteriorates after being irradiated by a neutron dose. Moreover, the gain of irradiated EYDFA has been reduced to 13.8 dB at a dose of 720 Gy.
文摘Based on propagation-rate equations, the influence of different input pulse durations on the properties of Er^3+/Yb^3+ co-doped double-clad fiber amplifier at dynamic equilibrium was analyzed. The change characteristic of output power sag with pulse duration and repetition rate was shown. Whether single or multichannel input pulses are amplified, the shorter the input pulse duration is, the smaller the power sags of output pulse will be. At low repetition rate, upper gain values(Gupper) of gain swing are almost the same for different input pulse durations, which tend to the small signal gain, but lower gain value(Glower) of short input pulse is larger than that of long input pulse. At highrepetition rate, lower gain value(Glower) approaches to upper gain value(Glower).
基金partially supported by the Natural Science Foundation of Tianjin under grant 13JCYBJC16100the National Natural Science Foundation of China under grants 61107035 and 61378043+1 种基金the National Key Scientific Instrument and Equipment Development Project of China under grant 2013YQ03091502the National Basic Research Program of China(973 Program)under grant 2014CB340104
文摘In this paper, Er/Yb co-doped fiber amplifiers(EYDFAs) with an Yb-band fiber Bragg grating(FBG) at the pump end to improve the performance of the amplifier is systematically studied. The influence of the reflectivity and center wavelength of the FBG along with the gain-fiber length on the performance of an EYDFA are numerically analyzed. The results show that the wavelength of the FBG has critical influence on the efficiency of the EYDFA,whereas the requirement to its reflectivity is relaxed. It is an effective and promising way to improve the efficiency of a high-power pumped EYDFA by introducing a suitable Yb-band FBG at the pump end. Based on the analysis of the underlying principles, suggestions for the practical design and possible further improvement strategies are also proposed.
文摘A new '(?)' type of wideband erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with medium thin film filter is proposed, Average gain about 15.5dB between 1530nm and 1570nm with gain difference of below 2 dB is obtained.
基金supported by the National Key R&D Program of China(No.2020YFB1805902)。
文摘In this Letter,the optical amplification characteristics of the home-made Bi/P co-doped silica fiber were systematically explored in the range of 1270–1360 nm.The maximum gain of 24.6 dB was obtained in the single-pass amplification device,and then improved to 38.3 dB in the double-pass amplification device for-30 dBm signal power.In addition,we simultaneously investigated the laser performance of the fiber with the linear cavity.A slope efficiency of 16.4%at~1313 nm was obtained with a maximum output power of about 133 mW under the input pump power of 869 mW at 1240 nm.As far as we know,it is the first laser reported based on the bismuth-doped fiber in China.
文摘We designed and evaluated a fluoride-based high concentration erbium/ cerium co-doped fiber amplifier. It is suitable for Metropolitan Area Networks due to faster transient, flatter (unfiltered) gain, smaller footprint and gain excursion than its silica-based counterpart.
基金Authors are thankful for the support of National Natural Science Foundation of China (Grant Nos. 61520106014, 61405014 and 61377096), Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunica- tions) (No. IPOC2016ZT07), Key Laboratory of Optical Fiber Sensing & Communications (Education Ministry of China), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province (No. GD201702) and Science and Technology Commission of Shanghai Municipality, China (Nos. SKLSFO2015-01 and 15220721500). We also wishes to express our thanks to all members of Photonics & Optical Communications at UNSW, Prof. John Canning and Dr. Kevin Cook at University of Sydney, Prof. Graham Town at Macquarie University, and Prof. Tingyun Wang at Shanghai University for their assistance and contributions.
文摘Targeting the huge unused bandwidth(BW)of modem telecommunication networks,Bi/Er co-doped silica optical fibers(BEDFs)have been proposed and developed for ultra-broadband,high-gain optical amplifiers covering the 1150-1700 nm wavelength range.Ultrabroadband luminescence has been demonstrated in both BEDFs and bismuth/erbium/ytterbium co-doped optical fibers(BEYDFs)fabricated with the modified chemical vapor deposition(MCVD)and in situ doping techniques.Several novel and sophisticated techniques have been developed for the fabrication and characterization of the new active fibers.For controlling the performance of the active fibers,post-treatment processes using high temperature,γ-radiation,and laser light have been introduced.Although many fundamental scientific and technological issues and challenges still remain,several photonic applications,such as fiber sensing,fiber gratings,fiber amplification,fiber lasers,etc.,have already been demonstrated.
文摘Erbium ytterbium co-doped super-fluorescent fiber source (EYD-SFS) has been simulated by a theoret- ical model based on rate equations and power transfer equations. The output performances of four basic structures of EYD-SFS have been expressed, and it indicated that the DPF structure is a preferable structure. The dependence of output power, mean wavelength and bandwidth stability on the pump fiber length and the concentration of Er3+ and Yb3+ have also been studied. The results indicated with a proper doping concentration of Er3+ and Yb3+ of 6.0 × 10^26 ions/m3 and 1.0 × 10^27 ions/m3, the optimal gain fiber length is 3.6 cm. In this condition, good performances of DPF structure of EYD-SFS have been achieved.
基金supported by Science & Technology Inovation Fund of Shanghai Institute of Ceramics
文摘Se-based chalcohalide glass of 50GeSe2-25In2Se3-25CsI was prepared. The thermal and optical characterizations revealed that this host was thermally and optically superior for practical applications. Strong emission centered at 1.22μm was observed in all Tm3+ sin- gle-doped, Tm3+/Ho3+ and Tm3+/Er3+ co-doped samples with an excitation of 808 nm wavelength. The emission was attributed to the Tm3+: 3Hs-→3H6 transition. The co-doping of Ho3+ or Er3+ largely broadened the width and slightly strengthened the intensity of the 1.22 gm emis- sion. The possible energy transfer processes and luminescence kinetics were figured. In addition, its potential application as the host material for novel optical amplifiers was discussed.
基金supported by the National Natural Science Foundation of China(Nos.62122040,62075113 and 61875103)。
文摘To overcome Yb lasing,a kilowatt-level 1535 nm fiber laser is utilized to in-band pump an Er:Yb co-doped fiber(EYDF)amplifier.The output power of a 301 W narrow-linewidth EYDF amplifier operating at 1585 nm,with 3 dB bandwidth of 150 pm and M^(2)<1.4,is experimentally demonstrated.To the best of our knowledge,it is the highest output power achieved in L-band narrow-linewidth fiber amplifiers with good beam quality.Theoretically,a new ion transition behavior among energy levels for in-band pumping EYDF is uncovered,and a spatial-mode-resolved nonlinearityassisted theoretical model is developed to understand its internal dynamics.Numerical simulations reveal that the reduction in slope efficiency is significantly related to excited-state absorption(ESA).ESA has a nonlinear hindering effect on power scaling.It can drastically lower the pump absorption and slope efficiency with increasing pump power for in-band pumped EYDF amplifiers.Meanwhile,optimized approaches are proposed to improve its power to the kilowatt level via in-band pumping.
文摘We report the design and analysis of a rod-type photonic crystal fiber with Er-Yb co-doped for the high power 1.5-μm band amplifier.The fiber structure is designed to be the 120-μm extreme large core diameter,300-μm inner cladding diameter,and 1.5-mm outer cladding diameter that ensure the single mode output during high power amplification.Both the continuous wave(CW) and pulsed amplification characteristics are analyzed based on the exact modeling and simulation under the designed geometry.The 4-mJ pulse energy and 400-kW peak power are obtained in theory,so the 1.5-μm band amplifier that achieves milojoule level pulse energy meanwhile keeping single mode is firstly designed.