Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored ...Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored in porous nanomaterials is still challenging.Here,through the template-free S-assisted pyrolysis of low-cost Fe-salts with melamine(MA),porous alveolate Fe/g-C3N4 catalysts with high-density(Fe loading up to 17.7 wt%)and increased USCAD Fe sites were synthesized.The presence of a certain amount of S species in the Fe-salts/MA system plays an important role in the formation of USCAD S-Fe-salt/CN catalysts;the S species act as a"sacrificial carrier"to increase the dispersion of Fe species through Fe-S coordination and generate porous alveolate structure by escaping in the form of SO2 during pyrolysis.The S-Fe-salt/CN catalysts exhibit greatly promoted activity and reusability for degrading various organic pollutants in advanced oxidation processes compared to the corresponding Fe-salt/CN catalysts,due to the promoted accessibility of USCAD Fe sites by the porous alveolate structure.This S-assisted method exhibits good feasibility in a large variety of S species(thiourea,S powder,and NH4SCN)and Fe salts,providing a new avenue for the low-cost and large-scale synthesis of high-density USCAD metal/g-C3N4 catalysts.展开更多
The enhanced intensity and lengthened lifetime of 1.54 μm emission were observed for Er:LiNbO3 crystal codoped with Zn2+ ions.The ZnO codoping led to the reduction of the green upconversion emission in Er:LiNbO3 c...The enhanced intensity and lengthened lifetime of 1.54 μm emission were observed for Er:LiNbO3 crystal codoped with Zn2+ ions.The ZnO codoping led to the reduction of the green upconversion emission in Er:LiNbO3 crystals.The decay trace of the 4S3/2→4I15/2 was ob-viously nonexponential for Er:LiNbO3 codoped with 0 and 3 mol.% ZnO,but became exponential for one codoped with 6 mol.% ZnO.The OH-absorption spectra showed after codoping with Zn2+ ions,the OH-absorption peaking position shifted from ~3495 to 3484 cm-1,and the absorption cross section decreased.These spectroscopic characteristics suggested that the improvement of 1.54 μm emission was attributed to the reduction of Er3+ cluster sites.展开更多
THE β-like globin gene cluster in human is very homologous to that in mouse. The locuscontrol region (LCR) which is contained in 20 kb upstream of the E-globin gene consists offour erythrold-specif1c DNaseⅠhypersens...THE β-like globin gene cluster in human is very homologous to that in mouse. The locuscontrol region (LCR) which is contained in 20 kb upstream of the E-globin gene consists offour erythrold-specif1c DNaseⅠhypersensitive sites (HS1-HS4) (flg. 1 ). It has beenknown that LCR is critical for the high-level expression of globin genes; its deletion might re-sult in disorder of globin gene expression, even induce severe anemia. Recently,展开更多
Cu/ZSM-5 and CeO_2-modified Cu/ZSM-5 catalysts were prepared by a wetness impregnation method. The addition of CeO_2 was found to enhance the NO_x selective catalytic reduction(SCR) activity of the catalyst at low t...Cu/ZSM-5 and CeO_2-modified Cu/ZSM-5 catalysts were prepared by a wetness impregnation method. The addition of CeO_2 was found to enhance the NO_x selective catalytic reduction(SCR) activity of the catalyst at low temperatures, but the high-temperature activity was weakened. The catalysts were characterized by X-ray diffraction(XRD), nitrogen physisorption, inductively coupled plasma optical emission spectrometry(ICP-OES), X-ray photoelectron spectroscopy(XPS), electron paramagnetic resonance(EPR), H_2 temperature-programmed reduction(TPR) and NH_3 temperature-programmed desorption(TPD). The results showed that more CuO clusters instead of isolated Cu^(2+) species were obtained on the modified catalyst. These active CuO clusters, as well as the Cu-Ce synergistic effect, improved the redox property of the catalyst and low-temperatures SCR activity via promoting the oxidation of NO to NO_2 and fast SCR reaction. The loss in high-temperatures activity was attributed to the enhanced competitive oxidation of NH_3 by O_2 and decreased surface acidity of the catalyst.展开更多
文摘Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored in porous nanomaterials is still challenging.Here,through the template-free S-assisted pyrolysis of low-cost Fe-salts with melamine(MA),porous alveolate Fe/g-C3N4 catalysts with high-density(Fe loading up to 17.7 wt%)and increased USCAD Fe sites were synthesized.The presence of a certain amount of S species in the Fe-salts/MA system plays an important role in the formation of USCAD S-Fe-salt/CN catalysts;the S species act as a"sacrificial carrier"to increase the dispersion of Fe species through Fe-S coordination and generate porous alveolate structure by escaping in the form of SO2 during pyrolysis.The S-Fe-salt/CN catalysts exhibit greatly promoted activity and reusability for degrading various organic pollutants in advanced oxidation processes compared to the corresponding Fe-salt/CN catalysts,due to the promoted accessibility of USCAD Fe sites by the porous alveolate structure.This S-assisted method exhibits good feasibility in a large variety of S species(thiourea,S powder,and NH4SCN)and Fe salts,providing a new avenue for the low-cost and large-scale synthesis of high-density USCAD metal/g-C3N4 catalysts.
基金Project supported by the National Natural Science Foundation of China (10732100)National Science Foundation of Heilongjiang Province (B200903)
文摘The enhanced intensity and lengthened lifetime of 1.54 μm emission were observed for Er:LiNbO3 crystal codoped with Zn2+ ions.The ZnO codoping led to the reduction of the green upconversion emission in Er:LiNbO3 crystals.The decay trace of the 4S3/2→4I15/2 was ob-viously nonexponential for Er:LiNbO3 codoped with 0 and 3 mol.% ZnO,but became exponential for one codoped with 6 mol.% ZnO.The OH-absorption spectra showed after codoping with Zn2+ ions,the OH-absorption peaking position shifted from ~3495 to 3484 cm-1,and the absorption cross section decreased.These spectroscopic characteristics suggested that the improvement of 1.54 μm emission was attributed to the reduction of Er3+ cluster sites.
文摘THE β-like globin gene cluster in human is very homologous to that in mouse. The locuscontrol region (LCR) which is contained in 20 kb upstream of the E-globin gene consists offour erythrold-specif1c DNaseⅠhypersensitive sites (HS1-HS4) (flg. 1 ). It has beenknown that LCR is critical for the high-level expression of globin genes; its deletion might re-sult in disorder of globin gene expression, even induce severe anemia. Recently,
基金Project supported by the the National Natural Science Foundation of China(51372137)Ministry of Science and Technology,China(2015AA034603)
文摘Cu/ZSM-5 and CeO_2-modified Cu/ZSM-5 catalysts were prepared by a wetness impregnation method. The addition of CeO_2 was found to enhance the NO_x selective catalytic reduction(SCR) activity of the catalyst at low temperatures, but the high-temperature activity was weakened. The catalysts were characterized by X-ray diffraction(XRD), nitrogen physisorption, inductively coupled plasma optical emission spectrometry(ICP-OES), X-ray photoelectron spectroscopy(XPS), electron paramagnetic resonance(EPR), H_2 temperature-programmed reduction(TPR) and NH_3 temperature-programmed desorption(TPD). The results showed that more CuO clusters instead of isolated Cu^(2+) species were obtained on the modified catalyst. These active CuO clusters, as well as the Cu-Ce synergistic effect, improved the redox property of the catalyst and low-temperatures SCR activity via promoting the oxidation of NO to NO_2 and fast SCR reaction. The loss in high-temperatures activity was attributed to the enhanced competitive oxidation of NH_3 by O_2 and decreased surface acidity of the catalyst.