Electrocardiograms (ECG) of Eremias multiocellata were studied at 5-35℃ in body temperature. Electrocardiogram wave intervals (R-R,P-R,QRS,T-P,and R-T) shortened while heart rate increased with the increasing of bod...Electrocardiograms (ECG) of Eremias multiocellata were studied at 5-35℃ in body temperature. Electrocardiogram wave intervals (R-R,P-R,QRS,T-P,and R-T) shortened while heart rate increased with the increasing of body temperature. The average heart rate was 14.6/min at 5℃,whereas it was 201/min at 35℃. The duration of wave intervals of ECG and the heart rate were related significantly to the body temperature (P<0.001). Among the components of a cardiac cycle the cardiac rest period (TP intervals) and the atria-ventricular conduction time (PR interval) were affected mostly by body temperature. In the other hand the ventricular depolarization and repolarization (QRS and R-T intervals) were relatively less affected by the body temperature. The increasing of heart rate with body temperature was mainly caused by the shortening of ECG wave intervals,and the T-P interval (the cardiac rest period) was shortened more noticeably than other intervals.展开更多
Sox9 is an important member of Sox family which is involved in a variety of developmental processes including sex determination and gonadal differentiation. The cDNA of Sox9 from multiocellated racerunner E. multiocel...Sox9 is an important member of Sox family which is involved in a variety of developmental processes including sex determination and gonadal differentiation. The cDNA of Sox9 from multiocellated racerunner E. multiocellata was cloned using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The sequence contains a 1497 bp open reading frame, which encodes a 498 amino acid protein with a predicted molecular weight of 55.45 kDa. EmSox9 displays high similarity to those of reptiles, and shows an overall amino acid identity of 〉82%. We also investigated the tissue-specific expression of EmSox9 mRNA by realtime quantitative PCR. Sox9 mRNA is present in brain, heart, liver, kidney, gonads and muscle tissues of adult E. multiocellata, with the highest expression in brain and testis. The results indicate that Sox9 may play important roles in some tissues during E. multiocellata neural and gonadal development.展开更多
The major histocompatibility complex (MHC) is a dynamic genetic region with an essential role in the adaptive immunity of jawed vertebrates. The MHC polymorphism is affected by many processes such as birth-and- deat...The major histocompatibility complex (MHC) is a dynamic genetic region with an essential role in the adaptive immunity of jawed vertebrates. The MHC polymorphism is affected by many processes such as birth-and- death evolution, gene conversion, and concerted evolution. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. However, the investigation of this region in nonavian reptiles is still in its infancy. We present the first characterization of MHC class I genes in a species from the family Lacertidae. We assessed genetic diversity and a role of selection in shaping the diversity of MHC class I exon 4 among 37 individuals of Eremias multiocellata from a population in Lanzhou, China. We generated 67 distinct DNA sequences using cloning and sequencing methods, and identified 36 putative functional variants as well as two putative pseudogene-variants. We found the number of variants within an individual varying between two and seven, indicating that there are at least four MHC class I loci in this species. Gene duplication plays a role in increasing copy numbers of MHC genes and allelic diversity in this species. The class I exon 4 sequences are characteristic of low nucleotide diversity. No signal of recombination is detected, but purifying selection is detected in β2-microglobulin interaction sites and some other silent sites outside of the function-constraint regions. Certain identical alleles are shared by Eremias multiocellata and E. przewalskii and E. brenchleyi, suggesting trans-species polymorphism. The data are compatible with a birth-and-death model of evolution.展开更多
Food availability significantly affects an animal's energy metabolism, and thus its phenotype, survival, and reproduction. Maternal and offspring responses to food conditions are critical for understanding population...Food availability significantly affects an animal's energy metabolism, and thus its phenotype, survival, and reproduction. Maternal and offspring responses to food conditions are critical for understanding population dynamics and life-history evolution of a species. In this study, we conducted food manipulation experiments in field enclosures to identify the effect of food restriction on female reproductive traits and postpartum body condition, as well as on hatchling phenotypes, in a lacertid viviparous lizard from the Inner Mongolian desert steppe of China. Females under low-food availability treatment (LFT) had poorer immune function and body condition compared with those under high-food availability treatment (HFT). The food availability treatments significantly affected the litter size and litter mass of the females, but not their gestation period in captivity or brood success, or the body size sprint speed, and sex ratio of the neonates. Females from the LFT group had smaller litter sizes and, therefore, lower litter mass than those from the HFT group. These results suggest that female racerunners facing food restriction lay fewer offspring with unchanged body size and locomotor performance, and incur a cost in the form of poor postpartum body condition and immune function. The flexibility of maternal responses to variable food availability represents an important life strategy that could enhance the resistance of lizards to unpredictable environmental change.展开更多
文摘Electrocardiograms (ECG) of Eremias multiocellata were studied at 5-35℃ in body temperature. Electrocardiogram wave intervals (R-R,P-R,QRS,T-P,and R-T) shortened while heart rate increased with the increasing of body temperature. The average heart rate was 14.6/min at 5℃,whereas it was 201/min at 35℃. The duration of wave intervals of ECG and the heart rate were related significantly to the body temperature (P<0.001). Among the components of a cardiac cycle the cardiac rest period (TP intervals) and the atria-ventricular conduction time (PR interval) were affected mostly by body temperature. In the other hand the ventricular depolarization and repolarization (QRS and R-T intervals) were relatively less affected by the body temperature. The increasing of heart rate with body temperature was mainly caused by the shortening of ECG wave intervals,and the T-P interval (the cardiac rest period) was shortened more noticeably than other intervals.
基金supported by the National Natural Science Foundation of China (No. 30670263)
文摘Sox9 is an important member of Sox family which is involved in a variety of developmental processes including sex determination and gonadal differentiation. The cDNA of Sox9 from multiocellated racerunner E. multiocellata was cloned using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The sequence contains a 1497 bp open reading frame, which encodes a 498 amino acid protein with a predicted molecular weight of 55.45 kDa. EmSox9 displays high similarity to those of reptiles, and shows an overall amino acid identity of 〉82%. We also investigated the tissue-specific expression of EmSox9 mRNA by realtime quantitative PCR. Sox9 mRNA is present in brain, heart, liver, kidney, gonads and muscle tissues of adult E. multiocellata, with the highest expression in brain and testis. The results indicate that Sox9 may play important roles in some tissues during E. multiocellata neural and gonadal development.
基金supported by the Science and Technology Project for Outstanding Youths in Life Science (KSCX2-EW-Q-6) from the Chinese Academy of SciencesNational Natural Science Foundation of China (31272281)
文摘The major histocompatibility complex (MHC) is a dynamic genetic region with an essential role in the adaptive immunity of jawed vertebrates. The MHC polymorphism is affected by many processes such as birth-and- death evolution, gene conversion, and concerted evolution. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. However, the investigation of this region in nonavian reptiles is still in its infancy. We present the first characterization of MHC class I genes in a species from the family Lacertidae. We assessed genetic diversity and a role of selection in shaping the diversity of MHC class I exon 4 among 37 individuals of Eremias multiocellata from a population in Lanzhou, China. We generated 67 distinct DNA sequences using cloning and sequencing methods, and identified 36 putative functional variants as well as two putative pseudogene-variants. We found the number of variants within an individual varying between two and seven, indicating that there are at least four MHC class I loci in this species. Gene duplication plays a role in increasing copy numbers of MHC genes and allelic diversity in this species. The class I exon 4 sequences are characteristic of low nucleotide diversity. No signal of recombination is detected, but purifying selection is detected in β2-microglobulin interaction sites and some other silent sites outside of the function-constraint regions. Certain identical alleles are shared by Eremias multiocellata and E. przewalskii and E. brenchleyi, suggesting trans-species polymorphism. The data are compatible with a birth-and-death model of evolution.
基金supported by the grant from the National Natural Science Fund for Distinguished Young Scholars(31525006)
文摘Food availability significantly affects an animal's energy metabolism, and thus its phenotype, survival, and reproduction. Maternal and offspring responses to food conditions are critical for understanding population dynamics and life-history evolution of a species. In this study, we conducted food manipulation experiments in field enclosures to identify the effect of food restriction on female reproductive traits and postpartum body condition, as well as on hatchling phenotypes, in a lacertid viviparous lizard from the Inner Mongolian desert steppe of China. Females under low-food availability treatment (LFT) had poorer immune function and body condition compared with those under high-food availability treatment (HFT). The food availability treatments significantly affected the litter size and litter mass of the females, but not their gestation period in captivity or brood success, or the body size sprint speed, and sex ratio of the neonates. Females from the LFT group had smaller litter sizes and, therefore, lower litter mass than those from the HFT group. These results suggest that female racerunners facing food restriction lay fewer offspring with unchanged body size and locomotor performance, and incur a cost in the form of poor postpartum body condition and immune function. The flexibility of maternal responses to variable food availability represents an important life strategy that could enhance the resistance of lizards to unpredictable environmental change.