期刊文献+
共找到252篇文章
< 1 2 13 >
每页显示 20 50 100
Reduced finite difference scheme and error estimates based on POD method for non-stationary Stokes equation
1
作者 罗振东 欧秋兰 谢正辉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第7期847-858,共12页
The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in th... The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation. 展开更多
关键词 finite difference scheme proper orthogonal decomposition error estimate non-stationary Stokes equation
下载PDF
Optimal Error Estimates of the Crank-Nicolson Scheme for Solving a Kind of Decoupled FBSDEs
2
作者 Zhe Wang Yang Li 《Journal of Applied Mathematics and Physics》 2018年第2期338-346,共9页
In this paper, under weak conditions, we theoretically prove the second-order convergence rate of the Crank-Nicolson scheme for solving a kind of decoupled forward-backward stochastic differential equations.
关键词 FORWARD BACKWARD Stochastic Differential Equations SECOND-ORDER scheme error estimate Trapezoidal RULE
下载PDF
SHARP POINTWISE-IN-TIME ERROR ESTIMATE OF L1 SCHEME FOR NONLINEAR SUBDIFFUSION EQUATIONS
3
作者 Dongfang Li Hongyu Qin Jiwei Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2024年第3期662-678,共17页
An essential feature of the subdiffusion equations with theα-order time fractional derivative is the weak singularity at the initial time.The weak regularity of the solution is usually characterized by a regularity p... An essential feature of the subdiffusion equations with theα-order time fractional derivative is the weak singularity at the initial time.The weak regularity of the solution is usually characterized by a regularity parameterσ∈(0,1)∪(1,2).Under this general regularity assumption,we present a rigorous analysis for the truncation errors and develop a new tool to obtain the stability results,i.e.,a refined discrete fractional-type Grönwall inequality(DFGI).After that,we obtain the pointwise-in-time error estimate of the widely used L1 scheme for nonlinear subdiffusion equations.The present results fill the gap on some interesting convergence results of L1 scheme onσ∈(0,α)∪(α,1)∪(1,2].Numerical experiments are provided to demonstrate the effectiveness of our theoretical analysis. 展开更多
关键词 Sharp pointwise-in-time error estimate Ll scheme Nonlinear subdiffusion equations Non-smooth solutions
原文传递
A POSTERIORI ERROR ESTIMATION OF THE NEW MIXED ELEMENT SCHEMES FOR SECOND ORDER ELLIPTIC PROBLEM ON ANISOTROPIC MESHES
4
作者 王培珍 陈绍春 《Acta Mathematica Scientia》 SCIE CSCD 2014年第5期1510-1518,共9页
This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established with... This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh. 展开更多
关键词 error estimator anisotropic meshes new mixed element schemes
下载PDF
An Isogeometric Error Estimate for Transport Equation in 2D
5
作者 Aurélien Goudjo Uriel Aguemon 《Advances in Pure Mathematics》 2019年第9期777-793,共17页
In this paper, an isogeometric error estimate for transport equation is obtained in 2D to prove the convergence of isogeometric method. The result that we have obtained, generalizes Ern result, got in finite elements ... In this paper, an isogeometric error estimate for transport equation is obtained in 2D to prove the convergence of isogeometric method. The result that we have obtained, generalizes Ern result, got in finite elements method. For the time discretization, the two stage Heun scheme is used to prove this result. For a polynomial of degree k≥1, the order of convergence in space is 2 and in time is . 展开更多
关键词 error estimate Isogeometric Method The Two STAGE Heun scheme TRANSPORT EQUATION
下载PDF
Error Estimates for the Difference Method to System of Ordinary Differential Equations with Boundary Layer
6
作者 Ilhame Amirali 《Journal of Applied Mathematics and Physics》 2013年第5期79-84,共6页
This work deals with the numerical solution of singular perturbation system of ordinary differential equations with boundary layer. For the numerical solution of this problem fitted finite difference scheme on a unifo... This work deals with the numerical solution of singular perturbation system of ordinary differential equations with boundary layer. For the numerical solution of this problem fitted finite difference scheme on a uniform mesh is constructed and analyzed. The uniform error estimates for the approximate solution are obtained. 展开更多
关键词 SINGULAR PERTURBATION Linear System Difference scheme UNIFORM Convergence error estimateS
下载PDF
Performance and Improvement of MCS Selection with Channel Quality Estimation Errors for HSDPA
7
作者 贾民丽 匡镜明 +1 位作者 万蕾 费泽松 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期462-466,共5页
The throughput performance of modulation and coding schemes (MCS) selection with channel quality estimation errors (CQEE) is analyzed for high-speed downlink packet access (HSDPA). To reduce the loss of throughp... The throughput performance of modulation and coding schemes (MCS) selection with channel quality estimation errors (CQEE) is analyzed for high-speed downlink packet access (HSDPA). To reduce the loss of throughput caused by CQEE, the robust MCS selection method and adaptive MCS switching scheme are proposed. In addition, automatic repeat request (ARQ) scheme is used to improve the block error rate (BLER) performance. Simulation results show that the proposed methods decrease the throughput loss resulted from CQEE efficiently and BLER performance gets better with ARQ scheme. 展开更多
关键词 high-speed downlink packet access (HSDPA) modulation and coding scheme (MCS) channel quality estimation error (CQEE) automatic repeat request (ARQ)
下载PDF
Cahn-Hilliard方程的一个超紧致有限差分格式
8
作者 栗雪娟 王丹 《山东理工大学学报(自然科学版)》 CAS 2024年第1期73-78,共6页
研究四阶Cahn-Hilliard方程的数值求解方法。给出组合型超紧致差分格式,将其用于四阶Cahn-Hilliard方程的空间导数离散,采用四阶Runge-Kutta格式离散时间导数,将二者结合得到四阶Cahn-Hilliard方程的离散格式,并给出了该格式的误差估计... 研究四阶Cahn-Hilliard方程的数值求解方法。给出组合型超紧致差分格式,将其用于四阶Cahn-Hilliard方程的空间导数离散,采用四阶Runge-Kutta格式离散时间导数,将二者结合得到四阶Cahn-Hilliard方程的离散格式,并给出了该格式的误差估计。通过编程计算得到其数值解,并与精确解进行对比,结果表明本文的数值方法误差小,验证了所提方法的有效性和可行性。 展开更多
关键词 四阶Cahn-Hilliard方程 组合型超紧致差分方法 四阶Runge-Kutta方法 误差估计
下载PDF
多项时间分数阶扩散方程类Carey非协调元的误差分析
9
作者 马国锋 《许昌学院学报》 CAS 2024年第2期7-11,共5页
基于L^(1)全离散格式,针对具有Caputo导数的二维多项时间分数阶扩散方程给出了类Carey非协调有限元方法.利用该单元的特殊性质和分数阶导数巧妙的处理技巧导出了L^(2)模和H^(1)模意义下的最优误差估计.
关键词 多项时间分数阶扩散方程 类Carey元 全离散格式 最优误差估计
下载PDF
反向散射通信中标签选择策略中断性能分析
10
作者 刘英挺 周治洋 +1 位作者 耿梦丹 李兴旺 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第6期2401-2408,共8页
该文研究的反向散射通信(BackCom)系统由1个专用射频信号源、若干个标签及1个目的节点构成。在考虑了信道估计误差(CEE)的前提下,该文在Nakagami-m信道中,提出了能够最大化目的节点信噪比(SNR)的标签选择策略,推导了所提策略的中断概率... 该文研究的反向散射通信(BackCom)系统由1个专用射频信号源、若干个标签及1个目的节点构成。在考虑了信道估计误差(CEE)的前提下,该文在Nakagami-m信道中,提出了能够最大化目的节点信噪比(SNR)的标签选择策略,推导了所提策略的中断概率和分集增益的解析表达式。该文的分析中,考虑了标签自身能耗对系统性能的影响。仿真结果验证了理论分析的正确性,同时考察了关键参数对系统性能的影响。理论分析和仿真结果均表明,信道估计误差的存在使得系统的分集增益为0。 展开更多
关键词 反向散射通信 信道估计误差 中断性能 标签选择 NAKAGAMI-M信道
下载PDF
二维半线性波动方程的能量稳定的Galerkin方法超收敛分析
11
作者 杨怀君 和刘萌 《郑州航空工业管理学院学报》 2024年第4期98-105,共8页
文章研究了一类半线性波动方程的能量稳定的全离散Galerkin方法的超收敛误差估计。首先,分析了数值格式解的唯一性和稳定性。其次,利用矩形网格上双线性元的特殊性质以及插值算子和Ritz算子在H1-范数下的超逼近的估计,得到了超逼近的结... 文章研究了一类半线性波动方程的能量稳定的全离散Galerkin方法的超收敛误差估计。首先,分析了数值格式解的唯一性和稳定性。其次,利用矩形网格上双线性元的特殊性质以及插值算子和Ritz算子在H1-范数下的超逼近的估计,得到了超逼近的结果。再次,借助于插值后处理技术得到了H1-范数下的全局超收敛的结果。最后,通过数值实验验证了理论分析的正确性。 展开更多
关键词 半线性波动方程 能量稳定的全离散格式 超收敛误差估计
下载PDF
一类四阶方程基于降阶格式的谱Galerkin逼近及误差估计
12
作者 王远路 江剑韬 《遵义师范学院学报》 2024年第2期81-84,92,共5页
本文针对一类四阶方程提出了一种基于降阶格式的有效谱Galerkin逼近.首先,引入一个辅助函数,将四阶方程化为两个耦合的二阶方程,并推导了它们的弱形式及其离散格式.其次,利用Lax-Milgram引理和非一致带权Sobolev空间中正交投影算子的逼... 本文针对一类四阶方程提出了一种基于降阶格式的有效谱Galerkin逼近.首先,引入一个辅助函数,将四阶方程化为两个耦合的二阶方程,并推导了它们的弱形式及其离散格式.其次,利用Lax-Milgram引理和非一致带权Sobolev空间中正交投影算子的逼近性质,严格地证明了弱解和逼近解的存在唯一性及它们之间的误差估计.最后,通过一些数值算例,数值结果表明该算法是收敛和高精度的. 展开更多
关键词 四阶方程 降阶格式 谱Galerkin逼近 误差估计
下载PDF
Landau-Lifshitz-Slonczewski方程的一阶向后Euler有限元方法的最优误差估计
13
作者 赵云丹 《温州大学学报(自然科学版)》 2024年第3期1-12,共12页
研究了求解Landau-Lifshitz-Slonczewski方程的一阶向后Euler有限元全离散算法,使得数值解可近似满足单位长度的非凸约束,并得到了精确解和数值解关于磁化强度在L2-范数下的最优误差估计.
关键词 Landau-Lifshitz-Slonczewski方程 一阶向后Euler格式 有限元 最优误差估计
下载PDF
CONVERGENCE OF AN IMMERSED INTERFACE UPWIND SCHEME FOR LINEAR ADVECTION EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS I:L^1-ERROR ESTIMATES 被引量:7
14
作者 Xin Wen Shi Jin 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第1期1-22,共22页
We study the L^l-error estimates for the upwind scheme to the linear advection equations with a piecewise constant coefficients modeling linear waves crossing interfaces. Here the interface condition is immersed into ... We study the L^l-error estimates for the upwind scheme to the linear advection equations with a piecewise constant coefficients modeling linear waves crossing interfaces. Here the interface condition is immersed into the upwind scheme. We prove that, for initial data with a bounded variation, the numerical solution of the immersed interface upwind scheme converges in L^l-norm to the differential equation with the corresponding interface condition. We derive the one-halfth order L^l-error bounds with explicit coefficients following a technique used in [25]. We also use some inequalities on binomial coefficients proved in a consecutive paper [32]. 展开更多
关键词 Linear advection equations Immersed interface upwind scheme Piecewise constant coefficients error estimate Half order error bound
原文传递
OPTIMAL POINT-WISE ERROR ESTIMATE OF A COMPACT FINITE DIFFERENCE SCHEME FOR THE COUPLED NONLINEAR SCHRODINGER EQUATIONS 被引量:7
15
作者 TingchunWang 《Journal of Computational Mathematics》 SCIE CSCD 2014年第1期58-74,共17页
In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is de... In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is decoupled and linearized in practical computa- tion. Due to the difficulty caused by compact difference on the nonlinear term, it is very hard to obtain the optimal error estimate without any restriction on the grid ratio. In order to overcome the difficulty, we transform the compact difference scheme into a special and equivalent vector form, then use the energy method and some important lemmas to obtain the optimal convergent rate, without any restriction on the grid ratio, at the order of O(h4 +r2) in the discrete L∞ -norm with time step - and mesh size h. Finally, numerical results are reported to test our theoretical results of the proposed scheme. 展开更多
关键词 Coupled nonlinear SchrSdinger equations Compact difference scheme CONSERVATION Point-wise error estimate.
原文传递
THE L1-ERROR ESTIMATES FOR A HAMILTONIAN-PRESERVING SCHEME FOR THE LIOUVILLE EQUATION WITH PIECEWISE CONSTANT POTENTIALS AND PERTURBED INITIAL DATA 被引量:1
16
作者 Xin Wen 《Journal of Computational Mathematics》 SCIE CSCD 2011年第1期26-48,共23页
We study the Ll-error of a Hamiltonian-preserving scheme, developed in [19], for the Liouville equation with a piecewise constant potential in one space dimension when the initial data is given with perturbation error... We study the Ll-error of a Hamiltonian-preserving scheme, developed in [19], for the Liouville equation with a piecewise constant potential in one space dimension when the initial data is given with perturbation errors. We extend the l1-stability analysis in [46] and apply the Ll-error estimates with exact initial data established in [45] for the same scheme. We prove that the scheme with the Dirichlet incoming boundary conditions and for a class of bounded initial data is Ll-convergent when the initial data is given with a wide class of perturbation errors, and derive the Ll-error bounds with explicit coefficients. The convergence rate of the scheme is shown to be less than the order of the initial perturbation error, matching with the fact that the perturbation solution can be l1-unstable. 展开更多
关键词 Liouville equations Hamiltonian preserving schemes Piecewise constant po-tentials error estimate Perturbed initial data Semiclassical limit.
原文传递
On Accuracy of Lax-Friedrichs Scheme for Discontinuous Solutions of Convection Equations
17
作者 丁丽娟 《Journal of Beijing Institute of Technology》 EI CAS 1997年第3期208-212,共5页
Derive L-2-error bounds for Lax-Friedrichs schemes for discontinuous solutions oflinear hyperbolic convection equations.It is known that the Lax-Friedrichs scheme is a firstorder scheme.Analyzes convergent rate of the... Derive L-2-error bounds for Lax-Friedrichs schemes for discontinuous solutions oflinear hyperbolic convection equations.It is known that the Lax-Friedrichs scheme is a firstorder scheme.Analyzes convergent rate of the scheme through its modified equations andshows that the first order Lax-Friedrichs scheme to approach BV solutions of the convectionequation has L ̄2-error bounds of O(△x ̄(1/4)),where △x is the discrete mesh length.Nemericalexperiments are presented and numerical results justify the theoretical analysis. 展开更多
关键词 Lax-Friedrichs scheme modified equation discontinuous solutions error estimates
下载PDF
Local Discontinuous Galerkin Scheme for Space Fractional Allen–Cahn Equation 被引量:2
18
作者 Can Li Shuming Liu 《Communications on Applied Mathematics and Computation》 2020年第1期73-91,共19页
This paper is concerned with the efficient numerical solution for a space fractional Allen–Cahn(AC)equation.Based on the features of the fractional derivative,we design and analyze a semi-discrete local discontinuous... This paper is concerned with the efficient numerical solution for a space fractional Allen–Cahn(AC)equation.Based on the features of the fractional derivative,we design and analyze a semi-discrete local discontinuous Galerkin(LDG)scheme for the initial-boundary problem of the space fractional AC equation.We prove the optimal convergence rates of the semi-discrete LDG approximation for smooth solutions.Finally,we test the accuracy and efficiency of the designed numerical scheme on a uniform grid by three examples.Numerical simulations show that the space fractional AC equation displays abundant dynamical behaviors. 展开更多
关键词 Fractional Allen-Cahn equation Local discontinuous Galerkin scheme error estimates
下载PDF
A New Second Order Numerical Scheme for Solving Forward Backward Stochastic Differential Equations with Jumps 被引量:1
19
作者 Hongqiang Zhou Yang Li Zhe Wang 《Applied Mathematics》 2016年第12期1408-1414,共8页
In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator  linearly depending on . And we theoretically prove that the conv... In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator  linearly depending on . And we theoretically prove that the convergence rates of them are of second order for solving  and of first order for solving  and  in  norm. 展开更多
关键词 Numerical scheme error estimates Backward Stochastic Differential Equations
下载PDF
High-Order Local Discontinuous Galerkin Algorithm with Time Second-Order Schemes for the Two-Dimensional Nonlinear Fractional Diffusion Equation 被引量:1
20
作者 Min Zhang Yang Liu Hong Li 《Communications on Applied Mathematics and Computation》 2020年第4期613-640,共28页
In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.T... In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(h^(k+1)+At^(2))is derived,where k≥0 denotes the index of the basis function.Extensive numerical results with Q^(k)(k=0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ. 展开更多
关键词 Two-dimensional nonlinear fractional difusion equation High-order LDG method Second-orderθscheme Stability and error estimate
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部