Purpose: The goal of this study is to explore whether deep learning based embed ded models can provide a better visualization solution for large citation networks. De sign/methodology/approach: Our team compared the v...Purpose: The goal of this study is to explore whether deep learning based embed ded models can provide a better visualization solution for large citation networks. De sign/methodology/approach: Our team compared the visualization approach borrowed from the deep learning community with the well-known bibliometric network visualization for large scale data. 47,294 highly cited papers were visualized by using three network embedding models plus the t-SNE dimensionality reduction technique. Besides, three base maps were created with the same dataset for evaluation purposes. All base maps used the classic Open Ord method with different edge cutting strategies and parameters. Findings: The network embedded maps with t-SNE preserve a very similar global structure to the full edges classic force-directed map, while the maps vary in local structure. Among them, the Node2Vec model has the best overall visualization performance, the local structure has been significantly improved and the maps' layout has very high stability.Research limitations: The computational and time costs of training are very high for network em bedded models to obtain high dimensional latent vector. Only one dimensionality reduction technique was tested. Practical implications: This paper demonstrates that the network embedding models are able to accurately reconstruct the large bibliometric network in the vector space. In the future, apart from network visualization, many classical vector-based machine learning algorithms can be applied to network representations for solving bibliomet ric analysis tasks. Originality/value: This paper provides the first systematic comparison of classical science mapping visualization with network embedding based visualization on a large scale dataset. We showed deep learning based network embedding model with t-SNE can provide a richer,more stable science map. We also designed a practical evaluation method to investigate and compare maps.展开更多
China's cormaaunications industry is an important part of the electronic information industry, and plays a significant role in the national informatization process. In 2006, China issued its National Plans for Medium...China's cormaaunications industry is an important part of the electronic information industry, and plays a significant role in the national informatization process. In 2006, China issued its National Plans for Medium and Long-term Development of Science and Technology (2006-2020) (NPMLDST). Since 2006, there has been a rapid increase in the number of citations of China's interna- tional papers in the field of communications. In accordance with the goals listed in the NPMLDST, China needs to over- take several competitors by 2020 to be among the top five countries in the field of natural science field. By comparing two Essential Science Indicators (ESI) (i.e., the total number of citations and the number of citations per paper) for China and other countries, China's annual growth rate is found to exceed that of other influential countries in the field of sci- ence and technology, and exhibits evident growth-type characteristics. Besides, our study also shows that the short- age of high-quality academic papers in China is the main obstacle to improving the impact of China's academic publications.展开更多
基金funded by the strategic research project of the Development Planning Bureau of the Chinese Academy of Sciences under Grant No.GHJ-ZLZX-2019-42the Youth Fund Project of Institutes of Science and Development, Chinese Academy of Sciences under Grant name “Research on Key Methods in Comparison of Scientific Funding Layout”。
文摘Purpose: The goal of this study is to explore whether deep learning based embed ded models can provide a better visualization solution for large citation networks. De sign/methodology/approach: Our team compared the visualization approach borrowed from the deep learning community with the well-known bibliometric network visualization for large scale data. 47,294 highly cited papers were visualized by using three network embedding models plus the t-SNE dimensionality reduction technique. Besides, three base maps were created with the same dataset for evaluation purposes. All base maps used the classic Open Ord method with different edge cutting strategies and parameters. Findings: The network embedded maps with t-SNE preserve a very similar global structure to the full edges classic force-directed map, while the maps vary in local structure. Among them, the Node2Vec model has the best overall visualization performance, the local structure has been significantly improved and the maps' layout has very high stability.Research limitations: The computational and time costs of training are very high for network em bedded models to obtain high dimensional latent vector. Only one dimensionality reduction technique was tested. Practical implications: This paper demonstrates that the network embedding models are able to accurately reconstruct the large bibliometric network in the vector space. In the future, apart from network visualization, many classical vector-based machine learning algorithms can be applied to network representations for solving bibliomet ric analysis tasks. Originality/value: This paper provides the first systematic comparison of classical science mapping visualization with network embedding based visualization on a large scale dataset. We showed deep learning based network embedding model with t-SNE can provide a richer,more stable science map. We also designed a practical evaluation method to investigate and compare maps.
基金supported by National High-tech R&D Program of China (863 Program) under Grant No.2011AA01A206
文摘China's cormaaunications industry is an important part of the electronic information industry, and plays a significant role in the national informatization process. In 2006, China issued its National Plans for Medium and Long-term Development of Science and Technology (2006-2020) (NPMLDST). Since 2006, there has been a rapid increase in the number of citations of China's interna- tional papers in the field of communications. In accordance with the goals listed in the NPMLDST, China needs to over- take several competitors by 2020 to be among the top five countries in the field of natural science field. By comparing two Essential Science Indicators (ESI) (i.e., the total number of citations and the number of citations per paper) for China and other countries, China's annual growth rate is found to exceed that of other influential countries in the field of sci- ence and technology, and exhibits evident growth-type characteristics. Besides, our study also shows that the short- age of high-quality academic papers in China is the main obstacle to improving the impact of China's academic publications.