The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl...The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.展开更多
Scheduling problem is a well-known combinatorial optimization problem.An effective improved estimation of distribution algorithm(IEDA) was proposed for minimizing the makespan of the unrelated parallel machine schedul...Scheduling problem is a well-known combinatorial optimization problem.An effective improved estimation of distribution algorithm(IEDA) was proposed for minimizing the makespan of the unrelated parallel machine scheduling problem(UPMSP).Mathematical description was given for the UPMSP.The IEDA which was combined with variable neighborhood search(IEDA_VNS) was proposed to solve the UPMSP in order to improve local search ability.A new encoding method was designed for representing the feasible solutions of the UPMSP.More knowledge of the UPMSP were taken consideration in IEDA_ VNS for probability matrix which was based the processing time matrix.The simulation results show that the proposed IEDA_VNS can solve the problem effectively.展开更多
针对混合流水车间调度问题(Hybrid flow-shop scheduling problem,HFSP)的特点,设计了基于排列的编码和解码方法,建立了描述问题解空间的概率模型,进而提出了一种有效的分布估计算法(Estimation of distribution algorithm,EDA).该算法...针对混合流水车间调度问题(Hybrid flow-shop scheduling problem,HFSP)的特点,设计了基于排列的编码和解码方法,建立了描述问题解空间的概率模型,进而提出了一种有效的分布估计算法(Estimation of distribution algorithm,EDA).该算法基于概率模型通过采样产生新个体,并基于优势种群更新概率模型的参数.同时,通过实验设计方法对算法参数设置进行了分析并确定了有效的参数组合.最后,通过基于实例的数值仿真以及与已有算法的比较验证了所提算法的有效性和鲁棒性.展开更多
构造了一种基于Alopex(Algorithm of pattern extraction)和分布估计算法(Estimation of distribution algorithm,EDA)相融合的进化算法EDA-Alopex。该算法将分布估计算法嵌入到一种基于Alopex的群智能进化算法(Alopex-based evolutiona...构造了一种基于Alopex(Algorithm of pattern extraction)和分布估计算法(Estimation of distribution algorithm,EDA)相融合的进化算法EDA-Alopex。该算法将分布估计算法嵌入到一种基于Alopex的群智能进化算法(Alopex-based evolutionary algorithm,AEA)中,利用分布估计算法收敛速度快及与传统进化算法进化模式不同的特点来改进AEA算法。新算法综合了AEA算法搜索得到的个体间相关性信息和EDA搜索过程中得到的全局概率信息,能够更好地指导种群向有利的区域进化。仿真结果表明:EDA改进的EDA-Alopex算法搜索性能与AEA算法的搜索性能相比有较大提高,特别是其收敛速度与AEA算法相比有明显提高。展开更多
基金supported by the National Natural Science Foundation of China(71571076)the National Key R&D Program for the 13th-Five-Year-Plan of China(2018YFF0300301).
文摘The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.
基金National Natural Science Foundations of China(Nos.61573144,61174040)
文摘Scheduling problem is a well-known combinatorial optimization problem.An effective improved estimation of distribution algorithm(IEDA) was proposed for minimizing the makespan of the unrelated parallel machine scheduling problem(UPMSP).Mathematical description was given for the UPMSP.The IEDA which was combined with variable neighborhood search(IEDA_VNS) was proposed to solve the UPMSP in order to improve local search ability.A new encoding method was designed for representing the feasible solutions of the UPMSP.More knowledge of the UPMSP were taken consideration in IEDA_ VNS for probability matrix which was based the processing time matrix.The simulation results show that the proposed IEDA_VNS can solve the problem effectively.
文摘面向用户生成内容(User generated content,UGC)的进化搜索在大数据及个性化服务领域已引起广泛关注,其关键在于基于多源异构用户生成内容构建用户认知偏好模型,进而设计高效的进化搜索机制.针对此,提出融合注意力机制(Attention mechanism,AM)的受限玻尔兹曼机(Restricted Boltzmann machine,RBM)偏好认知代理模型构建机制,并应用于交互式分布估计算法(Interactive estimation of distribution algorithm,IEDA),设计含用户生成内容的个性化进化搜索策略.基于用户群体提供的文本评论,以及搜索物品的类别文本,构建无监督受限玻尔兹曼机模型提取广义特征;设计注意力机制,融合广义特征,获取对用户认知偏好高度相关特征的集成;利用该特征再次训练受限玻尔兹曼机,实现对用户偏好认知代理模型的构建;根据用户偏好认知代理模型,给出交互式分布估计算法概率更新模型以及物品适应度评价函数,实现物品个性化进化搜索.算法在亚马逊个性化搜索实例的应用验证了用户认知偏好模型的可靠性,以及个性化进化搜索的有效性.
文摘针对混合流水车间调度问题(Hybrid flow-shop scheduling problem,HFSP)的特点,设计了基于排列的编码和解码方法,建立了描述问题解空间的概率模型,进而提出了一种有效的分布估计算法(Estimation of distribution algorithm,EDA).该算法基于概率模型通过采样产生新个体,并基于优势种群更新概率模型的参数.同时,通过实验设计方法对算法参数设置进行了分析并确定了有效的参数组合.最后,通过基于实例的数值仿真以及与已有算法的比较验证了所提算法的有效性和鲁棒性.
文摘构造了一种基于Alopex(Algorithm of pattern extraction)和分布估计算法(Estimation of distribution algorithm,EDA)相融合的进化算法EDA-Alopex。该算法将分布估计算法嵌入到一种基于Alopex的群智能进化算法(Alopex-based evolutionary algorithm,AEA)中,利用分布估计算法收敛速度快及与传统进化算法进化模式不同的特点来改进AEA算法。新算法综合了AEA算法搜索得到的个体间相关性信息和EDA搜索过程中得到的全局概率信息,能够更好地指导种群向有利的区域进化。仿真结果表明:EDA改进的EDA-Alopex算法搜索性能与AEA算法的搜索性能相比有较大提高,特别是其收敛速度与AEA算法相比有明显提高。