In present work,liquid phase esterification of acetic acid with ethanol over dodecatungestophosphoric acid (DTPA) supported on K10 montmorillonite was systematically studied and optimization of process parameters wa...In present work,liquid phase esterification of acetic acid with ethanol over dodecatungestophosphoric acid (DTPA) supported on K10 montmorillonite was systematically studied and optimization of process parameters was carried out.The 20% m/m DTPA/K10 was found to be the optimum catalyst with 90% acetic acid conversion and 100% ethyl acetate selectivity.The study was also explored to see the feasibility of 20% m/m DTPA/K10 as a catalyst for the alkylation of acetic acid with other alcohols like methanol,iso-propanol and n-butanol.The 20% m/m DTPA/K10 has shown increased activity with the increase in carbon number,at the same alcohol reflux.The results are novel.展开更多
Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyc...Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyces cerevisiae strains.Development of industrial S.cerevisiae strains with high tolerance towards these inhibitors is thus critical for efficient lignocellulosic ethanol production.In this study,the acetic acid or furfural tolerance of different S.cerevisiae strains could be significantly enhanced after adaptive evolution via serial cultivation for 40 generations under stress conditions.The acetic acid-based adaptive strain SPSC01-TA9 produced 30.5 g·L^(-1)ethanol with a yield of 0.46 g·g^(-1)in the presence of 9 g·L^(-1)acetic acid,while the acetic acid/furfural-based adaptive strain SPSC01-TAF94 produced more ethanol of 36.2 g·L^(-1)with increased yield up to 0.49 g·g^(-1)in the presence of both 9 g·L^(-1)acetic acid and 4 g·L^(-1)furfural.Significant improvements were also observed during non-detoxified corn stover hydrolysate culture by SPSC01-TAF94,which achieved ethanol production and yield of 29.1 g·L^(-1)and 0.49 g·g^(-1),respectively,the growth and fermentation efficiency of acetic acid/furfural-based adaptive strain in hydrolysate was 95%higher than those of wildtype strains,indicating the acetic acid-and furfural-based adaptive evolution strategy could be an effective approach for improving lignocellulosic ethanol production.The adapted strains developed in this study with enhanced tolerance against acetic acid and furfural could be potentially contribute to economically feasible and sustainable lignocellulosic biorefinery.展开更多
Esterification of methyl alcohol with acetic acid catalysed by Amberlyst-15 (cation-exchange resin) was carried out in a batch reactor in the temperature ranging between 318-338 K, at atmospheric pressure. The reactio...Esterification of methyl alcohol with acetic acid catalysed by Amberlyst-15 (cation-exchange resin) was carried out in a batch reactor in the temperature ranging between 318-338 K, at atmospheric pressure. The reaction rate increased with increase in catalyst concentration and reaction temperature, but decreased with an increase in water concentration. Stirrer speed had virtually no effect on the rate under the experimental conditions. The rate data were correlated with a second-order kinetic model based on homogeneous reaction. The apparent activation energy was found to be 22.9kJ mol-1 for the formation of methyl acetate. The methyl acetate production was carried out as batch and continuous in a packed bed reactive distillation column with high purity methyl acetate produced.展开更多
To compare the therapeutic efficacy of USguided intratumoral injection of acetic acid and ethanol in 77 rats with transplanted Walker256 carcinosarcoma. The rats were divided into three groups: intratumoral acetic aci...To compare the therapeutic efficacy of USguided intratumoral injection of acetic acid and ethanol in 77 rats with transplanted Walker256 carcinosarcoma. The rats were divided into three groups: intratumoral acetic acid injection (IAI), intratumoral ethanol injection (IEI), and control group receiving intratumoral saline injection (ISI). Tumor growth rates were measured. Pathologic changes were chronologically observed, and tumor necrosis was quantified as a percentage of the tumor volume using a semiquantitative method. Results: Tumor growth rates were -(37±23)% in the IAI group, (210±174)% in the IEI group and (1 303±473)% in the ISI group (P<0.05). Tumor necrosis rates were (97.4±3.7)%, (79.4±10.9)% and (27.2±10.3)% respectively (P<0.01). In addition, the pathologic results showed that necrosis was more complete and repair of the peripheral tissue of tumor was faster in the IAI group as compared with the IEI group. Conclusion: IAI is more effective than IEI in the local therapy for liver tumors.展开更多
Abstract Acetic acid was selected as the model compound representing the carboxylic acids present in bio-oil. This work focuses the co-cracking of acetic acid with ethanol for bio-gasoline production. The influences o...Abstract Acetic acid was selected as the model compound representing the carboxylic acids present in bio-oil. This work focuses the co-cracking of acetic acid with ethanol for bio-gasoline production. The influences of reaction temperature and pressure on the conversion of reactants as well as the selectivity and Conaposition of the crudegasoline phase were investigated. It was found that increasing reaction temperature benefited the conversion of reactants and pressurized cracking produced a higher crude gasoline yield. At 400 ℃ and 1 MPa, the conversion of the reactants reached over 99% and the selectivity of the gasoline phase reached 42.79% (by mass). The gasoline phase shows outstanding quality, with a hydrocarbon content of 100%.展开更多
Vinegar production is seriously affected by the sensitivity of acetic acid bacteria (AAB) to high temperature, high ethanol concentrations, and high acetic acid concentrations. The aim of this study was to investigate...Vinegar production is seriously affected by the sensitivity of acetic acid bacteria (AAB) to high temperature, high ethanol concentrations, and high acetic acid concentrations. The aim of this study was to investigate the thermo-ethanol-acid tolerance characters of five AAB strains (VMA1, VMA5, VMA7, VMAM, VMAO) previously isolated from fermented mango alcohol and belonging to Gluconoacetobacter genera. As result, the five AAB strains exhibited good growth and acid production at temperatures up to 45°C;they could tolerate and produce acetic acid at ethanol concentrations up to 20% (v/v). In addition, the studied strains showed growth at acetic acid concentrations up to 4.5% (w/v). Strains VMA7 and VMAO showed the highest resistance properties: they demonstrated acid production at 50°C and VMAO could even grow at 60°C;they tolerated and produced acetic acid at 25% (v/v) ethanol concentration;they showed resistance to acetic acid concentrations up to 6% (w/v). Considering all these properties, the use of these strains would seriously contribute to improving the quality of the vinegar produced and help to reduce the cooling water feeds in vinegar production especially in hot countries in the context of global warming.展开更多
Successful commercialization of microalgal bio-industry requires the design of an integrated microalgal biorefinery system that facilitates the co-production of biofuels, high-value products and industrial chemicals f...Successful commercialization of microalgal bio-industry requires the design of an integrated microalgal biorefinery system that facilitates the co-production of biofuels, high-value products and industrial chemicals from the biomass. In this study, we investigated the use of sugar hydrolysate obtained from enzymatic saccharification of microalgal biomass (Chlorella sp. and T. suecica) as fermentation feedstock to produce industrially important chemicals, in particular acetic acid and butyric acid. By using hydrolysate with low sugar content as substrate for the anaerobic fermentation (1.5 - 2.4 g/L), we were able to prevent the bacterium C. saccharoperbutylacetonicum from activating its solventogenesis pathway. As a result, the fermentation process generated a product stream that was dominated by organic acids (acetic acid and butyric acid) rather than solvents (butanol, ethanol and acetone). Acetic acid constituted up to 92 wt% of Chlorella’s fermentation products and 80 wt% of T. suecica’s fermentation products. For T. suecica, the fermentation consumed almost all of the sugar available in the hydrolysate (up to 92% of initial sugar) and produced a reasonable yield of fermentation products (0.08 g fermentation products/g sugar). The Gompertz equation was successfully used to predict the formation kinetics of acetic acid and other fermentation products across both species. The results in the study demonstrate the production of industrially important chemicals, such as acetic acid and butyric acid, from the fermentation of microalgal sugar. The process described in the study can potentially be used as a value-adding step to generate biochemicals from cell debris in an integrated microalgal biorefinery system.展开更多
Synthesis of value-added chemicals from biomass is an essential strategy to mitigate the global dependency on fossil resources and achieve the aim of carbon neutrality. Thereinto, ethanol and acetic acid are crucial b...Synthesis of value-added chemicals from biomass is an essential strategy to mitigate the global dependency on fossil resources and achieve the aim of carbon neutrality. Thereinto, ethanol and acetic acid are crucial biomass-derived platform molecules.Recently, catalytic upgrading ethanol and acetic acid into C4 energy-intensive fuels and chemicals via the elongation of carbon backbone has received widespread attention. The primary focus of this review is to systematically describe the recent breakthrough in the conversion of ethanol or acetic acid to C4 chemicals including 1,3-butadiene, n-butenes, isobutene or n-butanol.Special attentions will be given to heterogeneous catalyst design strategies, reaction parameters on the catalytic performance along with the relevant mechanism investigations, as well as their future challenges and opportunities. The present review will provide the detailed insights into the synthesis of C4 chemicals from biomass-derived ethanol and acetic acid and shed a light on the development of highly efficient catalysts.展开更多
Separation of erucic acid from rape-seed oil using supercritical carbon dioxide with entrainer was carried on a pilot column with an inner diameter 14 mm and an effective total height 2.2 m. Experiments were focused o...Separation of erucic acid from rape-seed oil using supercritical carbon dioxide with entrainer was carried on a pilot column with an inner diameter 14 mm and an effective total height 2.2 m. Experiments were focused on the effects of entrainers, i.e. acetone, ethanol and ethyl acetate, on the extraction. It is showed that entrainers made selectivity lower, but separation time shorter.展开更多
The mechanism for the production of acetic acid from ethanol and water mixture catalyzed by iridium catalyst has been theoretically investigated.The cooperation of the iridium center and bpyO ligand is highlighted,whi...The mechanism for the production of acetic acid from ethanol and water mixture catalyzed by iridium catalyst has been theoretically investigated.The cooperation of the iridium center and bpyO ligand is highlighted,which plays an important role in the catalytic activity.The hydrogen release from the iridium center is the rate-determining step,with an energy barrier of 22.5 kcal/mol.The electronic structure analysis suggests electron-donating substituents could decrease the energy barrier.展开更多
The effect of thermal pretreatment on the active sites and catalytic performances of PtSn/SiO2 catalyst in acetic acid (AcOH) hydrogenation was investigated in this article. The catalysts were characterized by N2 ph...The effect of thermal pretreatment on the active sites and catalytic performances of PtSn/SiO2 catalyst in acetic acid (AcOH) hydrogenation was investigated in this article. The catalysts were characterized by N2 physical adsorption, X-ray diffraction, transmission electron microscopy, pyridine Fourier-transform infrared spectra, and H2-O2 titration on its physicochemical properties. The results showed that Pt species were formed primarily in crystalline structure and no PtSnx alloy was observed. Meanwhile, with the increment of thermal pretreatrnent temperature, Pt dispersion showed a decreas- ing trend due to the aggregation of Pt particles. Simultaneously, the amount of Lewis acid sites was remarkably influenced by such thermal pretreatment owning to the consequent physicochemical property variation of Sn species. Interestingly, the catalytic activity showed the similar variation trend with that of Lewis acid sites, confirming the important roles of Lewis acid sites in AcOH hydrogenation. Moreover, a balancing effect between exposed Pt and Lewis acid sites was obtained, resulting in the superior catalytic performance in AcOH hydrogenation.展开更多
The catalytic hydrogenation of carboxylic acid to alcohols is one of the important strategies for the conversion of biomass.Herein,a series of Ni-doped PtSn catalysts were prepared,characterized and studied in the hyd...The catalytic hydrogenation of carboxylic acid to alcohols is one of the important strategies for the conversion of biomass.Herein,a series of Ni-doped PtSn catalysts were prepared,characterized and studied in the hydrogenation of acetic acid.The Ni dopant has a strong interaction with Pt,which promotes the hydrogen adsorption,providing an activated hydrogen-rich environment for the hydrogenation.Meanwhile,the presence of Ni also improves the Pt dispersion,giving more accessible active sites for hydrogen activation.The cooperation of Pt and Ni significantly promotes the catalytic activity of the hydrogenation of acetic acid to ethanol.As a result,the catalyst with 0.1%Ni exhibits the best reaction activity,and its space time yield is twice as that of the PtSn/SiO2 catalyst.It provides a meaningful instruction on the catalyst design for the carboxylic acid hydrogenation.展开更多
文摘In present work,liquid phase esterification of acetic acid with ethanol over dodecatungestophosphoric acid (DTPA) supported on K10 montmorillonite was systematically studied and optimization of process parameters was carried out.The 20% m/m DTPA/K10 was found to be the optimum catalyst with 90% acetic acid conversion and 100% ethyl acetate selectivity.The study was also explored to see the feasibility of 20% m/m DTPA/K10 as a catalyst for the alkylation of acetic acid with other alcohols like methanol,iso-propanol and n-butanol.The 20% m/m DTPA/K10 has shown increased activity with the increase in carbon number,at the same alcohol reflux.The results are novel.
基金supported by the National Key Research and Development Program of China(2021YFC2101303)the National Natural Science Foundation of China(U22A20424 and 22378048)+6 种基金the Major Scientific and Technological Projects of Sinopecthe Dalian Technology Talents Project for Distinguished Young Scholars(2021RJ03)the Yunnan Provincial Rural Energy Engineering Key Laboratory(2022KF003)the National Natural Science Foundation of Liaoning Province(2023-MS-110)the Liaoning Revitalization Talents Program(XLYC2202049)the Fundamental Research Funds for the Central Universities(DUT22LK22)the CAS Key Laboratory of Renewable Energy,Guangzhou Institute of Energy Conversion(E229kf0401)。
文摘Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyces cerevisiae strains.Development of industrial S.cerevisiae strains with high tolerance towards these inhibitors is thus critical for efficient lignocellulosic ethanol production.In this study,the acetic acid or furfural tolerance of different S.cerevisiae strains could be significantly enhanced after adaptive evolution via serial cultivation for 40 generations under stress conditions.The acetic acid-based adaptive strain SPSC01-TA9 produced 30.5 g·L^(-1)ethanol with a yield of 0.46 g·g^(-1)in the presence of 9 g·L^(-1)acetic acid,while the acetic acid/furfural-based adaptive strain SPSC01-TAF94 produced more ethanol of 36.2 g·L^(-1)with increased yield up to 0.49 g·g^(-1)in the presence of both 9 g·L^(-1)acetic acid and 4 g·L^(-1)furfural.Significant improvements were also observed during non-detoxified corn stover hydrolysate culture by SPSC01-TAF94,which achieved ethanol production and yield of 29.1 g·L^(-1)and 0.49 g·g^(-1),respectively,the growth and fermentation efficiency of acetic acid/furfural-based adaptive strain in hydrolysate was 95%higher than those of wildtype strains,indicating the acetic acid-and furfural-based adaptive evolution strategy could be an effective approach for improving lignocellulosic ethanol production.The adapted strains developed in this study with enhanced tolerance against acetic acid and furfural could be potentially contribute to economically feasible and sustainable lignocellulosic biorefinery.
基金the Research Fund of Istanbul University. Project number: 944/090597.
文摘Esterification of methyl alcohol with acetic acid catalysed by Amberlyst-15 (cation-exchange resin) was carried out in a batch reactor in the temperature ranging between 318-338 K, at atmospheric pressure. The reaction rate increased with increase in catalyst concentration and reaction temperature, but decreased with an increase in water concentration. Stirrer speed had virtually no effect on the rate under the experimental conditions. The rate data were correlated with a second-order kinetic model based on homogeneous reaction. The apparent activation energy was found to be 22.9kJ mol-1 for the formation of methyl acetate. The methyl acetate production was carried out as batch and continuous in a packed bed reactive distillation column with high purity methyl acetate produced.
文摘To compare the therapeutic efficacy of USguided intratumoral injection of acetic acid and ethanol in 77 rats with transplanted Walker256 carcinosarcoma. The rats were divided into three groups: intratumoral acetic acid injection (IAI), intratumoral ethanol injection (IEI), and control group receiving intratumoral saline injection (ISI). Tumor growth rates were measured. Pathologic changes were chronologically observed, and tumor necrosis was quantified as a percentage of the tumor volume using a semiquantitative method. Results: Tumor growth rates were -(37±23)% in the IAI group, (210±174)% in the IEI group and (1 303±473)% in the ISI group (P<0.05). Tumor necrosis rates were (97.4±3.7)%, (79.4±10.9)% and (27.2±10.3)% respectively (P<0.01). In addition, the pathologic results showed that necrosis was more complete and repair of the peripheral tissue of tumor was faster in the IAI group as compared with the IEI group. Conclusion: IAI is more effective than IEI in the local therapy for liver tumors.
基金Supported by the National Natural Science Foundation of China(51276166)the National Science Technology Supporting Plan Through Contract(2011BAD22B06)+1 种基金the Zhejiang Provincial Natural Science Foundation(R1110089)the Program for New Century Excellent Talents in University(NCET-10-0741)
文摘Abstract Acetic acid was selected as the model compound representing the carboxylic acids present in bio-oil. This work focuses the co-cracking of acetic acid with ethanol for bio-gasoline production. The influences of reaction temperature and pressure on the conversion of reactants as well as the selectivity and Conaposition of the crudegasoline phase were investigated. It was found that increasing reaction temperature benefited the conversion of reactants and pressurized cracking produced a higher crude gasoline yield. At 400 ℃ and 1 MPa, the conversion of the reactants reached over 99% and the selectivity of the gasoline phase reached 42.79% (by mass). The gasoline phase shows outstanding quality, with a hydrocarbon content of 100%.
文摘Vinegar production is seriously affected by the sensitivity of acetic acid bacteria (AAB) to high temperature, high ethanol concentrations, and high acetic acid concentrations. The aim of this study was to investigate the thermo-ethanol-acid tolerance characters of five AAB strains (VMA1, VMA5, VMA7, VMAM, VMAO) previously isolated from fermented mango alcohol and belonging to Gluconoacetobacter genera. As result, the five AAB strains exhibited good growth and acid production at temperatures up to 45°C;they could tolerate and produce acetic acid at ethanol concentrations up to 20% (v/v). In addition, the studied strains showed growth at acetic acid concentrations up to 4.5% (w/v). Strains VMA7 and VMAO showed the highest resistance properties: they demonstrated acid production at 50°C and VMAO could even grow at 60°C;they tolerated and produced acetic acid at 25% (v/v) ethanol concentration;they showed resistance to acetic acid concentrations up to 6% (w/v). Considering all these properties, the use of these strains would seriously contribute to improving the quality of the vinegar produced and help to reduce the cooling water feeds in vinegar production especially in hot countries in the context of global warming.
文摘Successful commercialization of microalgal bio-industry requires the design of an integrated microalgal biorefinery system that facilitates the co-production of biofuels, high-value products and industrial chemicals from the biomass. In this study, we investigated the use of sugar hydrolysate obtained from enzymatic saccharification of microalgal biomass (Chlorella sp. and T. suecica) as fermentation feedstock to produce industrially important chemicals, in particular acetic acid and butyric acid. By using hydrolysate with low sugar content as substrate for the anaerobic fermentation (1.5 - 2.4 g/L), we were able to prevent the bacterium C. saccharoperbutylacetonicum from activating its solventogenesis pathway. As a result, the fermentation process generated a product stream that was dominated by organic acids (acetic acid and butyric acid) rather than solvents (butanol, ethanol and acetone). Acetic acid constituted up to 92 wt% of Chlorella’s fermentation products and 80 wt% of T. suecica’s fermentation products. For T. suecica, the fermentation consumed almost all of the sugar available in the hydrolysate (up to 92% of initial sugar) and produced a reasonable yield of fermentation products (0.08 g fermentation products/g sugar). The Gompertz equation was successfully used to predict the formation kinetics of acetic acid and other fermentation products across both species. The results in the study demonstrate the production of industrially important chemicals, such as acetic acid and butyric acid, from the fermentation of microalgal sugar. The process described in the study can potentially be used as a value-adding step to generate biochemicals from cell debris in an integrated microalgal biorefinery system.
基金supported by Scientific Research Project of Tianjin municipal Education Commission (2022KJ078)。
文摘Synthesis of value-added chemicals from biomass is an essential strategy to mitigate the global dependency on fossil resources and achieve the aim of carbon neutrality. Thereinto, ethanol and acetic acid are crucial biomass-derived platform molecules.Recently, catalytic upgrading ethanol and acetic acid into C4 energy-intensive fuels and chemicals via the elongation of carbon backbone has received widespread attention. The primary focus of this review is to systematically describe the recent breakthrough in the conversion of ethanol or acetic acid to C4 chemicals including 1,3-butadiene, n-butenes, isobutene or n-butanol.Special attentions will be given to heterogeneous catalyst design strategies, reaction parameters on the catalytic performance along with the relevant mechanism investigations, as well as their future challenges and opportunities. The present review will provide the detailed insights into the synthesis of C4 chemicals from biomass-derived ethanol and acetic acid and shed a light on the development of highly efficient catalysts.
文摘Separation of erucic acid from rape-seed oil using supercritical carbon dioxide with entrainer was carried on a pilot column with an inner diameter 14 mm and an effective total height 2.2 m. Experiments were focused on the effects of entrainers, i.e. acetone, ethanol and ethyl acetate, on the extraction. It is showed that entrainers made selectivity lower, but separation time shorter.
基金This work is supported by the National Natural Science Foundation of China (No. 21672018)the Fundamental Research Funds for the Central Universities (No. XK1802-6). We thank the National Supercomputing Center in Tianjin (TianHe-1) for providing part of the computational sources.
文摘The mechanism for the production of acetic acid from ethanol and water mixture catalyzed by iridium catalyst has been theoretically investigated.The cooperation of the iridium center and bpyO ligand is highlighted,which plays an important role in the catalytic activity.The hydrogen release from the iridium center is the rate-determining step,with an energy barrier of 22.5 kcal/mol.The electronic structure analysis suggests electron-donating substituents could decrease the energy barrier.
基金Acknowledgements We are grateful to the financial support from the National Natural Science Foundation of China (Grant Nos. 21276186, 21325626, 91434127, U1510203) and the Tianjin Natural Science Foundation (13JCZDJC33000).
文摘The effect of thermal pretreatment on the active sites and catalytic performances of PtSn/SiO2 catalyst in acetic acid (AcOH) hydrogenation was investigated in this article. The catalysts were characterized by N2 physical adsorption, X-ray diffraction, transmission electron microscopy, pyridine Fourier-transform infrared spectra, and H2-O2 titration on its physicochemical properties. The results showed that Pt species were formed primarily in crystalline structure and no PtSnx alloy was observed. Meanwhile, with the increment of thermal pretreatrnent temperature, Pt dispersion showed a decreas- ing trend due to the aggregation of Pt particles. Simultaneously, the amount of Lewis acid sites was remarkably influenced by such thermal pretreatment owning to the consequent physicochemical property variation of Sn species. Interestingly, the catalytic activity showed the similar variation trend with that of Lewis acid sites, confirming the important roles of Lewis acid sites in AcOH hydrogenation. Moreover, a balancing effect between exposed Pt and Lewis acid sites was obtained, resulting in the superior catalytic performance in AcOH hydrogenation.
基金The National Natural Science Foundation of China are acknowledged for the financial support on this work(Grant No.21878227).
文摘The catalytic hydrogenation of carboxylic acid to alcohols is one of the important strategies for the conversion of biomass.Herein,a series of Ni-doped PtSn catalysts were prepared,characterized and studied in the hydrogenation of acetic acid.The Ni dopant has a strong interaction with Pt,which promotes the hydrogen adsorption,providing an activated hydrogen-rich environment for the hydrogenation.Meanwhile,the presence of Ni also improves the Pt dispersion,giving more accessible active sites for hydrogen activation.The cooperation of Pt and Ni significantly promotes the catalytic activity of the hydrogenation of acetic acid to ethanol.As a result,the catalyst with 0.1%Ni exhibits the best reaction activity,and its space time yield is twice as that of the PtSn/SiO2 catalyst.It provides a meaningful instruction on the catalyst design for the carboxylic acid hydrogenation.