The discarded feathers / ethylene vinyl acetate copolymer( EVA) thermoplastic composite materials was obtained with discarded feathers as reinforced material and EVA powders as matrix material by hot pressing method. ...The discarded feathers / ethylene vinyl acetate copolymer( EVA) thermoplastic composite materials was obtained with discarded feathers as reinforced material and EVA powders as matrix material by hot pressing method. Sound absorption properties were studied by changing mass ratio of discarded feathers and EVA,thickness of composite materials,hot pressing pressure and hot pressing temperature. It was found that the sound absorption properties of composite materials were good when the mass ratio of discarded feathers and EVA was 1: 1,thickness of composite materials was 30 mm,hot pressing pressure was 8 MPa,and hot pressing temperature was 80 ℃. Under the optimum conditions,the effect of composite density on sound absorption property was analyzed. In a certain range,the sound absorption property was enhanced with the decrease of the composite density.When the composite density was 0. 1g /cm^3, the maximum absorption coefficient was 0.96. Finally,the capillary theory was used to calculate the maximum sound absorption coefficient of discarded feathers / EVA thermoplastic composite materials. The good agreements of experimental results and calculated results proved the validity of the theoretical models.展开更多
The increasing demand for new packages with increased shelf life properties has stimulated the increase of research in the active packaging sector. The use of antimicrobial agents requires an in-depth study of their p...The increasing demand for new packages with increased shelf life properties has stimulated the increase of research in the active packaging sector. The use of antimicrobial agents requires an in-depth study of their properties to avoid loss of efficiency of the polymer processing. In this context, the objective of this work was to evaluate the preparation of an 18% ethylene vinyl acetate copolymer (EVA) nanocomposite and zinc oxide (ZnO) as microbicidal nanoparticle, prepared in a monosulfon extruder. The nanoparticle was modified with octadecylamine and EVA 18 nanocomposite films were prepared and compared to the systems containing modified nanoparticle. These new materials were characterized by thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA), Time Domain Nuclear Magnetic Resonance (NMR) to investigate the effect of zinc oxide nanoparticles on thermal properties, EVA crystallinity and antimicrobial effect. The TGA showed a tendency of increase of the thermal stability in different proportions of ZnO. DSC results did not show significant changes in thermal parameters. The XRD analysis showed an increase in the degree of crystallinity of the nanocomposites in relation to the EVA matrix and change in the crystallinity with the increase of ZnO percentages. DMA analysis indicates change in structural organization through the variation of storage modulus, loss, and tan delta. Time domain NMR data corroborate with XRD data through the change in molecular mobility.展开更多
The effects of magnesium oxide (MgO) on the flame retardant performance of intumescent systems based on ammonium polyphosphate (APP) and pentaerythritol (PER) in ethylene vinyl acetate copolymer (EVA) were stu...The effects of magnesium oxide (MgO) on the flame retardant performance of intumescent systems based on ammonium polyphosphate (APP) and pentaerythritol (PER) in ethylene vinyl acetate copolymer (EVA) were studied. The results showed that MgO affects both the quality and quantity of residual char. There is an optimal value for the loading amount of MgO. More or less MgO loading may cause the formation of defective char layers and worsen the flame retardancy of EVA. According to the results of limiting oxygen index (LOI), vertical flammability test (UL94 rating) and cone calorimetry (CONE), the best flame retardancy with a strong and well intumescent char is obtained from the sample with 1 wt% of MgO, which has the highest LOI value of 27.9, UL94 rating of V-0 and the lowest peak heat release rate of 242 kW·m-2.展开更多
文摘The discarded feathers / ethylene vinyl acetate copolymer( EVA) thermoplastic composite materials was obtained with discarded feathers as reinforced material and EVA powders as matrix material by hot pressing method. Sound absorption properties were studied by changing mass ratio of discarded feathers and EVA,thickness of composite materials,hot pressing pressure and hot pressing temperature. It was found that the sound absorption properties of composite materials were good when the mass ratio of discarded feathers and EVA was 1: 1,thickness of composite materials was 30 mm,hot pressing pressure was 8 MPa,and hot pressing temperature was 80 ℃. Under the optimum conditions,the effect of composite density on sound absorption property was analyzed. In a certain range,the sound absorption property was enhanced with the decrease of the composite density.When the composite density was 0. 1g /cm^3, the maximum absorption coefficient was 0.96. Finally,the capillary theory was used to calculate the maximum sound absorption coefficient of discarded feathers / EVA thermoplastic composite materials. The good agreements of experimental results and calculated results proved the validity of the theoretical models.
文摘The increasing demand for new packages with increased shelf life properties has stimulated the increase of research in the active packaging sector. The use of antimicrobial agents requires an in-depth study of their properties to avoid loss of efficiency of the polymer processing. In this context, the objective of this work was to evaluate the preparation of an 18% ethylene vinyl acetate copolymer (EVA) nanocomposite and zinc oxide (ZnO) as microbicidal nanoparticle, prepared in a monosulfon extruder. The nanoparticle was modified with octadecylamine and EVA 18 nanocomposite films were prepared and compared to the systems containing modified nanoparticle. These new materials were characterized by thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA), Time Domain Nuclear Magnetic Resonance (NMR) to investigate the effect of zinc oxide nanoparticles on thermal properties, EVA crystallinity and antimicrobial effect. The TGA showed a tendency of increase of the thermal stability in different proportions of ZnO. DSC results did not show significant changes in thermal parameters. The XRD analysis showed an increase in the degree of crystallinity of the nanocomposites in relation to the EVA matrix and change in the crystallinity with the increase of ZnO percentages. DMA analysis indicates change in structural organization through the variation of storage modulus, loss, and tan delta. Time domain NMR data corroborate with XRD data through the change in molecular mobility.
基金financially supported by the National Natural Science Foundation of China(No.51203136)the Scientific Special Fund of Zhejiang Province(No.2013C01074)
文摘The effects of magnesium oxide (MgO) on the flame retardant performance of intumescent systems based on ammonium polyphosphate (APP) and pentaerythritol (PER) in ethylene vinyl acetate copolymer (EVA) were studied. The results showed that MgO affects both the quality and quantity of residual char. There is an optimal value for the loading amount of MgO. More or less MgO loading may cause the formation of defective char layers and worsen the flame retardancy of EVA. According to the results of limiting oxygen index (LOI), vertical flammability test (UL94 rating) and cone calorimetry (CONE), the best flame retardancy with a strong and well intumescent char is obtained from the sample with 1 wt% of MgO, which has the highest LOI value of 27.9, UL94 rating of V-0 and the lowest peak heat release rate of 242 kW·m-2.