A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-lo...A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-loop treatment of spent fuel and the nuclear chemical industry.In this study,1 wt.%,3 wt.%,5 wt.%,7 wt.%,and 9 wt.%Zr-Gd alloys were designed and fabricated with Zr-702 as the control element.The electrochemical behavior of the Zr-Gd alloys in boiling concentrated HNO3 was investigated,and the neutron shielding effect on plate thickness and Gd content was simulated.The experimental results demonstrate that the corrosion resistance of the alloy decreased slightly before~7-9 wt.%with increasing Gd content;this is the inflection point of its corrosion resistance.The alloy uniformly dissolved the Gd content that could not be dissolved in the Zr lattice,resulting in numerous micropores on the passivation coating,which deteriorated and accelerated the corrosion rate.The MCNP simulation demonstrated that when the Gd content was increased to 5 wt.%,a 2-mm-thick plate can shield 99.9%neutrons;an alloy with a Gd content≥7 wt.%required only a 1-mm-thick plate,thereby showing that the addition of Gd provides an excellent neutron poisoning effect.Thus,the corrosion resistance and neutron shielding performance of the Zr-Gd alloy can meet the harsh service requirements of the nuclear industry.展开更多
采用溶胶-凝胶法制备出Y_(2-2 x)MgTiO_(6)∶2 x Eu^(3+)(YMT∶2 x Eu^(3+),0≤x≤0.11)新型红色荧光粉。通过X射线衍射仪(XRD)检测样品的纯度,结果显示YMT∶Eu^(3+)样品属于单斜晶系,空间群为P21/n,无其他杂相。扫描电子显微镜(SEM)照...采用溶胶-凝胶法制备出Y_(2-2 x)MgTiO_(6)∶2 x Eu^(3+)(YMT∶2 x Eu^(3+),0≤x≤0.11)新型红色荧光粉。通过X射线衍射仪(XRD)检测样品的纯度,结果显示YMT∶Eu^(3+)样品属于单斜晶系,空间群为P21/n,无其他杂相。扫描电子显微镜(SEM)照片显示荧光粉为2μm的不规则颗粒。当激发波长为264 nm时,发射光谱出现四个尖锐的发射峰,分别位于591(^(5)D_(0)→^(7)F_(1))、619(^(5)D_(0)→^(7)F_(2))、657(^(5)D_(0)→^(7)F_(3))和693 nm(^(5)D_(0)→^(7)F_(4))。Eu^(3+)离子之间能量传递为电偶极子-电偶极子(d-d)相互作用。YMT∶0.14Eu^(3+)荧光粉的CIE色度坐标为(0.645,0.332),与红光标准色坐标(0.67,0.33)非常接近。变温PL光谱及热激活能计算结果显示荧光粉具有一定的热稳定性,因此YMT∶Eu^(3+)是一种具有潜在应用价值的LED红色荧光粉。展开更多
A yellow phosphor, Ca2BO3CI:Eu2+, is prepared by the high-temperature solid-state method. Under the condition of excitation sources ranging from ultraviolet to visible light, efficient yellow emission can be observe...A yellow phosphor, Ca2BO3CI:Eu2+, is prepared by the high-temperature solid-state method. Under the condition of excitation sources ranging from ultraviolet to visible light, efficient yellow emission can be observed. The emission spectrum shows an asymmetrical single intensive band centred at 573 nm, which corresponds to the 4f65dl→4f7 transition of Eu2+. Eu2+ ions occupy two types of Ca2+ sites in the Ca2BO3C1 lattice and form two corresponding emission centres, respectively, which lead to the asymmetrical emission of Eu2+ in Ca2BO3C1. The emission intensity of Eu2+ in Ca2BO3C1 is influenced by the Eu2+ doping concentration. Concentration quenching is discovered, and its mechanism is verified to be a dipole-dipole interaction. The value of the critical transfer distance is calculated to be 2.166 nm, which is in good agreement with the 2.120 nm value derived from the experimental data.展开更多
基金supported by the National Natural Science Foundation of China (Nos.52201021 and 52101099)Key Research and Development Program of Shaanxi (2021GY-249,2021GY-233)+1 种基金Natural Science Basic Research Program of Shaanxi (No.2020JC-50)Shaanxi Provincial Natural Science Youth Foundation (2022JQ-410).
文摘A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-loop treatment of spent fuel and the nuclear chemical industry.In this study,1 wt.%,3 wt.%,5 wt.%,7 wt.%,and 9 wt.%Zr-Gd alloys were designed and fabricated with Zr-702 as the control element.The electrochemical behavior of the Zr-Gd alloys in boiling concentrated HNO3 was investigated,and the neutron shielding effect on plate thickness and Gd content was simulated.The experimental results demonstrate that the corrosion resistance of the alloy decreased slightly before~7-9 wt.%with increasing Gd content;this is the inflection point of its corrosion resistance.The alloy uniformly dissolved the Gd content that could not be dissolved in the Zr lattice,resulting in numerous micropores on the passivation coating,which deteriorated and accelerated the corrosion rate.The MCNP simulation demonstrated that when the Gd content was increased to 5 wt.%,a 2-mm-thick plate can shield 99.9%neutrons;an alloy with a Gd content≥7 wt.%required only a 1-mm-thick plate,thereby showing that the addition of Gd provides an excellent neutron poisoning effect.Thus,the corrosion resistance and neutron shielding performance of the Zr-Gd alloy can meet the harsh service requirements of the nuclear industry.
文摘采用溶胶-凝胶法制备出Y_(2-2 x)MgTiO_(6)∶2 x Eu^(3+)(YMT∶2 x Eu^(3+),0≤x≤0.11)新型红色荧光粉。通过X射线衍射仪(XRD)检测样品的纯度,结果显示YMT∶Eu^(3+)样品属于单斜晶系,空间群为P21/n,无其他杂相。扫描电子显微镜(SEM)照片显示荧光粉为2μm的不规则颗粒。当激发波长为264 nm时,发射光谱出现四个尖锐的发射峰,分别位于591(^(5)D_(0)→^(7)F_(1))、619(^(5)D_(0)→^(7)F_(2))、657(^(5)D_(0)→^(7)F_(3))和693 nm(^(5)D_(0)→^(7)F_(4))。Eu^(3+)离子之间能量传递为电偶极子-电偶极子(d-d)相互作用。YMT∶0.14Eu^(3+)荧光粉的CIE色度坐标为(0.645,0.332),与红光标准色坐标(0.67,0.33)非常接近。变温PL光谱及热激活能计算结果显示荧光粉具有一定的热稳定性,因此YMT∶Eu^(3+)是一种具有潜在应用价值的LED红色荧光粉。
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974013, 60978060, and 10804006)the Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20090009110027)+5 种基金the Beijing Municipal Natural Science Foundation, China (Grant No. 1102028)the National Basic Research Program of China (Grant No. 2010CB327704)the National Natural Science Foundation for Distinguished Young Scholars (Grant No. 60825407)the Beijing Municipal Science and Technology Commission, China (Grant No. Z090803044009001)the Science Fund of the Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, China (Grant No. 2010LOI12)the Excellent Doctor's Science and Technology Innovation Foundation of Beijing Jiaotong University, China (Grant No. 2011YJS073)
文摘A yellow phosphor, Ca2BO3CI:Eu2+, is prepared by the high-temperature solid-state method. Under the condition of excitation sources ranging from ultraviolet to visible light, efficient yellow emission can be observed. The emission spectrum shows an asymmetrical single intensive band centred at 573 nm, which corresponds to the 4f65dl→4f7 transition of Eu2+. Eu2+ ions occupy two types of Ca2+ sites in the Ca2BO3C1 lattice and form two corresponding emission centres, respectively, which lead to the asymmetrical emission of Eu2+ in Ca2BO3C1. The emission intensity of Eu2+ in Ca2BO3C1 is influenced by the Eu2+ doping concentration. Concentration quenching is discovered, and its mechanism is verified to be a dipole-dipole interaction. The value of the critical transfer distance is calculated to be 2.166 nm, which is in good agreement with the 2.120 nm value derived from the experimental data.