Hydrodynamic circulation in a marine environment, characterized by the influence of strong tides, atmospheric loading and bathymetry, is a complex phenomenon. The physical and hydrodynamic characteristics of this flow...Hydrodynamic circulation in a marine environment, characterized by the influence of strong tides, atmospheric loading and bathymetry, is a complex phenomenon. The physical and hydrodynamic characteristics of this flow are absolutely crucial for the vertical mixing of the sea masses and consequently for the mixing of their physico-chemical parameters, such as nutrients and oxygen, as well as for the diffusion and dispersion of passive pollutants, the recharge of the waters and the general environmental situation. This paper examines the effect of a future increase in mean air temperature on the water column stratification of coastal areas of interest, which are subject to the above loadings and receive treated urban wastewater, and how this increase could affect their diffusion and mixing of conservative pollutants contained therein.展开更多
The hydrodynamic circulation within the marine environment is a complex phenomenon, characterized by the interplay of strong tidal forces, atmospheric influences, and bathymetric features. The physical and hydrodynami...The hydrodynamic circulation within the marine environment is a complex phenomenon, characterized by the interplay of strong tidal forces, atmospheric influences, and bathymetric features. The physical and hydrodynamic attributes of this flow play a pivotal role in promoting vertical mixing of seawater masses, thereby facilitating the integration of their physical and chemical parameters, including nutrients and oxygen. Additionally, they are instrumental in governing the dispersion and diffusion of pollutants originating from urban sewage, contributing to the overall water renewal process and environmental quality. This study investigates the potential impact of anticipated increases in average air temperatures on water column stratification in coastal regions susceptible to these dynamic influences. These areas receive treated urban sewage, and the study aims to assess how these temperature changes might influence the dispersion and mixing of pollutant loads present in these coastal waters.展开更多
文摘Hydrodynamic circulation in a marine environment, characterized by the influence of strong tides, atmospheric loading and bathymetry, is a complex phenomenon. The physical and hydrodynamic characteristics of this flow are absolutely crucial for the vertical mixing of the sea masses and consequently for the mixing of their physico-chemical parameters, such as nutrients and oxygen, as well as for the diffusion and dispersion of passive pollutants, the recharge of the waters and the general environmental situation. This paper examines the effect of a future increase in mean air temperature on the water column stratification of coastal areas of interest, which are subject to the above loadings and receive treated urban wastewater, and how this increase could affect their diffusion and mixing of conservative pollutants contained therein.
文摘The hydrodynamic circulation within the marine environment is a complex phenomenon, characterized by the interplay of strong tidal forces, atmospheric influences, and bathymetric features. The physical and hydrodynamic attributes of this flow play a pivotal role in promoting vertical mixing of seawater masses, thereby facilitating the integration of their physical and chemical parameters, including nutrients and oxygen. Additionally, they are instrumental in governing the dispersion and diffusion of pollutants originating from urban sewage, contributing to the overall water renewal process and environmental quality. This study investigates the potential impact of anticipated increases in average air temperatures on water column stratification in coastal regions susceptible to these dynamic influences. These areas receive treated urban sewage, and the study aims to assess how these temperature changes might influence the dispersion and mixing of pollutant loads present in these coastal waters.