K-means聚类算法随机确定初始聚类数目,而且原始数据集中含有大量的冗余特征会导致聚类时精度降低,而布谷鸟搜索(CS)算法存在收敛速度慢和局部搜索能力弱等问题,为此提出一种基于自适应布谷鸟优化特征选择的K-means聚类算法(DCFSK)。首...K-means聚类算法随机确定初始聚类数目,而且原始数据集中含有大量的冗余特征会导致聚类时精度降低,而布谷鸟搜索(CS)算法存在收敛速度慢和局部搜索能力弱等问题,为此提出一种基于自适应布谷鸟优化特征选择的K-means聚类算法(DCFSK)。首先,为提升CS算法的搜索速度和精度,在莱维飞行阶段,设计了自适应步长因子;为调节CS算法全局搜索和局部搜索之间的平衡、加快CS算法的收敛,动态调整发现概率,进而提出改进的动态CS算法(IDCS),在IDCS的基础上构建了结合动态CS的特征选择算法(DCFS)。其次,为提升传统欧氏距离的计算精确度,设计同时考虑样本和特征对距离计算贡献程度的加权欧氏距离;为了确定最佳聚类数目的选取方法,依据改进的加权欧氏距离构造了加权簇内距离和簇间距离。最后,为克服传统K-means聚类目标函数仅考虑簇内的距离而未考虑簇间距离的缺陷,提出基于中位数的轮廓系数的目标函数,进而设计了DCFSK。实验结果表明,在10个基准测试函数上,IDCS的各项指标取得了较优的结果;相较于K-means、DBSCAN(Density-Based Spatial Clustering of Applications with Noise)等算法,在6个合成数据集与6个UCI数据集上,DCFSK的聚类效果最佳。展开更多
This article is an addendum to the 2001 paper [1] which investigated an approach to hierarchical clustering based on the level sets of a density function induced on data points in a d-dimensional feature space. We ref...This article is an addendum to the 2001 paper [1] which investigated an approach to hierarchical clustering based on the level sets of a density function induced on data points in a d-dimensional feature space. We refer to this as the “level-sets approach” to hierarchical clustering. The density functions considered in [1] were those formed as the sum of identical radial basis functions centered at the data points, each radial basis function assumed to be continuous, monotone decreasing, convex on every ray, and rising to positive infinity at its center point. Such a framework can be investigated with respect to both the Euclidean (L2) and Manhattan (L1) metrics. The addendum here puts forth some observations and questions about the level-sets approach that go beyond those in [1]. In particular, we detail and ask the following questions. How does the level-sets approach compare with other related approaches? How is the resulting hierarchical clustering affected by the choice of radial basis function? What are the structural properties of a function formed as the sum of radial basis functions? Can the levels-sets approach be theoretically validated? Is there an efficient algorithm to implement the level-sets approach?展开更多
文摘K-means聚类算法随机确定初始聚类数目,而且原始数据集中含有大量的冗余特征会导致聚类时精度降低,而布谷鸟搜索(CS)算法存在收敛速度慢和局部搜索能力弱等问题,为此提出一种基于自适应布谷鸟优化特征选择的K-means聚类算法(DCFSK)。首先,为提升CS算法的搜索速度和精度,在莱维飞行阶段,设计了自适应步长因子;为调节CS算法全局搜索和局部搜索之间的平衡、加快CS算法的收敛,动态调整发现概率,进而提出改进的动态CS算法(IDCS),在IDCS的基础上构建了结合动态CS的特征选择算法(DCFS)。其次,为提升传统欧氏距离的计算精确度,设计同时考虑样本和特征对距离计算贡献程度的加权欧氏距离;为了确定最佳聚类数目的选取方法,依据改进的加权欧氏距离构造了加权簇内距离和簇间距离。最后,为克服传统K-means聚类目标函数仅考虑簇内的距离而未考虑簇间距离的缺陷,提出基于中位数的轮廓系数的目标函数,进而设计了DCFSK。实验结果表明,在10个基准测试函数上,IDCS的各项指标取得了较优的结果;相较于K-means、DBSCAN(Density-Based Spatial Clustering of Applications with Noise)等算法,在6个合成数据集与6个UCI数据集上,DCFSK的聚类效果最佳。
文摘障碍物的检测与跟踪技术是移动机器人行驶过程中的一个重要技术,有利于提高移动机器人的运动安全.为了提高了障碍物检测的准确率,针对欧氏聚类存在过分割和欠分割的情况,做出了两点改进:提出动态欧氏聚类搜索半径的方法来解决远处点云过于稀疏的问题;提出将半径搜索改成深度方向上的拓展搜索的方法来解决点云数据在深度方向上检测不完全和拖尾等问题.为了提高动态障碍物跟踪的准确率,在进行两帧障碍物数据关联时,设计了一种新的关联矩阵的计算方式,加入了障碍物的六自由度信息和尺寸信息,提高了动态匹配的成功率.仿真实验表明,经过改进后障碍物检测准确率达到了95.2%,多目标跟踪精度达到了13.2 mm.
文摘This article is an addendum to the 2001 paper [1] which investigated an approach to hierarchical clustering based on the level sets of a density function induced on data points in a d-dimensional feature space. We refer to this as the “level-sets approach” to hierarchical clustering. The density functions considered in [1] were those formed as the sum of identical radial basis functions centered at the data points, each radial basis function assumed to be continuous, monotone decreasing, convex on every ray, and rising to positive infinity at its center point. Such a framework can be investigated with respect to both the Euclidean (L2) and Manhattan (L1) metrics. The addendum here puts forth some observations and questions about the level-sets approach that go beyond those in [1]. In particular, we detail and ask the following questions. How does the level-sets approach compare with other related approaches? How is the resulting hierarchical clustering affected by the choice of radial basis function? What are the structural properties of a function formed as the sum of radial basis functions? Can the levels-sets approach be theoretically validated? Is there an efficient algorithm to implement the level-sets approach?