Let us define A=Hr=(aij)?to be n×n?r-Hankel matrix. The entries of matrix A are Fn=Fi+j-2?or Ln=Fi+j-2?where Fn?and Ln?denote the usual Fibonacci and Lucas numbers, respectively. Then, we obtained upper and l...Let us define A=Hr=(aij)?to be n×n?r-Hankel matrix. The entries of matrix A are Fn=Fi+j-2?or Ln=Fi+j-2?where Fn?and Ln?denote the usual Fibonacci and Lucas numbers, respectively. Then, we obtained upper and lower bounds for the spectral norm of matrix A. We compared our bounds with exact value of matrix A’s spectral norm. These kinds of matrices have connections with signal and image processing, time series analysis and many other problems.展开更多
针对多模型自适应估计(multiple model adaptive estimation,MMAE)方法适应突变故障能力差、多重渐消因子强跟踪算法滤波发散、故障条件概率计算量大等问题,提出一种改进的多重渐消因子强跟踪多模型自适应估计(strong tracking multiple...针对多模型自适应估计(multiple model adaptive estimation,MMAE)方法适应突变故障能力差、多重渐消因子强跟踪算法滤波发散、故障条件概率计算量大等问题,提出一种改进的多重渐消因子强跟踪多模型自适应估计(strong tracking multiple model adaptive estimation,STMMAE)快速故障诊断方法。通过多重渐消因子提高了故障突变时滤波器的跟踪性能;通过改进一步预测协方差阵更新方程,保证了滤波器稳定性,提高了估计精度;采用基于欧几里得范数的飞机舵面故障概率快速计算方法,降低了故障概率计算量。对比仿真表明,该算法跟踪性强、速度快、精度高,具有较好的鲁棒性和稳定性。展开更多
文摘Let us define A=Hr=(aij)?to be n×n?r-Hankel matrix. The entries of matrix A are Fn=Fi+j-2?or Ln=Fi+j-2?where Fn?and Ln?denote the usual Fibonacci and Lucas numbers, respectively. Then, we obtained upper and lower bounds for the spectral norm of matrix A. We compared our bounds with exact value of matrix A’s spectral norm. These kinds of matrices have connections with signal and image processing, time series analysis and many other problems.
文摘针对多模型自适应估计(multiple model adaptive estimation,MMAE)方法适应突变故障能力差、多重渐消因子强跟踪算法滤波发散、故障条件概率计算量大等问题,提出一种改进的多重渐消因子强跟踪多模型自适应估计(strong tracking multiple model adaptive estimation,STMMAE)快速故障诊断方法。通过多重渐消因子提高了故障突变时滤波器的跟踪性能;通过改进一步预测协方差阵更新方程,保证了滤波器稳定性,提高了估计精度;采用基于欧几里得范数的飞机舵面故障概率快速计算方法,降低了故障概率计算量。对比仿真表明,该算法跟踪性强、速度快、精度高,具有较好的鲁棒性和稳定性。