This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback att...This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback attractors on the tails estimates, and the asymptotic compactness of the random dynamical system is proved by decomposition method, and then we obtain the existence of a random attractor.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarant...In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarantee of computations with a given precision. The equations of programmed constraints and those of constraint perturbations are defined. The stability of the programmed manifold for numerical solutions of the kinematical and dynamical equations is obtained by corresponding construction of the constraint perturbation equations. The dynamical equations of system with programmed constraints are set up in the form of Lagrange’s equations in generalized coordinates. Certain inverse problems of rigid body dynamics are examined.展开更多
In this article, using coordinate transformation and Gronwall inequality, we study the vortex motion law of the anisotropic Cinzburg-Landau equation in a smooth bounded domain Ω (R^2,that is ,Эtuε=j,k=1∑2(ajkЭ...In this article, using coordinate transformation and Gronwall inequality, we study the vortex motion law of the anisotropic Cinzburg-Landau equation in a smooth bounded domain Ω (R^2,that is ,Эtuε=j,k=1∑2(ajkЭxkuε)xj+ε^2^-b(x)(1-|uε|^2)uε,x∈Ω,and conclude that each vortex,bj(t)(j=1,2,…,N)satisfies dt^-dbj(t)=-(a(bj(t))^-a1k(bj(t))Эxka(bj(t)),a(aj(t))^-a2k(bj(t))Эxka(bj(t))),where a(x)=√a11a22-a12^2. We prove that all the vortices are pinned together to the critical points of a(x). Furthermore, we prove that these critical points can not be the maximum points.展开更多
In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discreti...In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.展开更多
In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that ...In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al. [College Phys. 4 7(1985)] obtained the most simple and convenient approximate formula, known as the Zhu–Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard–Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu–Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.展开更多
By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ...By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena.展开更多
A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional con...A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional constraint violation stabilization method are determined according to the integration time step size and Taylor expansion method automatically. The direct integration method, the traditional constraint violation stabilization method and the new method presented in this paper are compared finally.展开更多
China's first interest rate hike during the last decade, aiming to cool down the seemingly overheated real estate market, had aroused more caution on housing market. This paper aims to analyze the housing price dynam...China's first interest rate hike during the last decade, aiming to cool down the seemingly overheated real estate market, had aroused more caution on housing market. This paper aims to analyze the housing price dynamics after an unanticipated economic shock, which was believed to have similar properties with the backward-looking expecta- tion models. The analysis of the housing price dynamics is based on the cobweb model with a simple user cost affected demand and a stock-flow supply assumption. Several nth- order delay rational difference equations are set up to illustrate the properties of housing dynamics phenomena, such as the equilibrium or oscillations, overshoot or undershoot and convergent or divergent, for a kind of heterogeneous backward-looking expectation models. The results show that demand elasticity is less than supply elasticity is not a necessary condition for the occurrence of oscillation. The housing price dynamics will vary substantially with the heterogeneous backward-looking expectation assumption and some other endogenous factors.展开更多
We introduce adaptive moving mesh central-upwind schemes for one-and two-dimensional hyperbolic systems of conservation and balance laws.The proposed methods consist of three steps.First,the solution is evolved by sol...We introduce adaptive moving mesh central-upwind schemes for one-and two-dimensional hyperbolic systems of conservation and balance laws.The proposed methods consist of three steps.First,the solution is evolved by solving the studied system by the second-order semi-discrete central-upwind scheme on either the one-dimensional nonuniform grid or the two-dimensional structured quadrilateral mesh.When the evolution step is complete,the grid points are redistributed according to the moving mesh differential equation.Finally,the evolved solution is projected onto the new mesh in a conservative manner.The resulting adaptive moving mesh methods are applied to the one-and two-dimensional Euler equations of gas dynamics and granular hydrodynamics systems.Our numerical results demonstrate that in both cases,the adaptive moving mesh central-upwind schemes outperform their uniform mesh counterparts.展开更多
In this work, we apply the bifurcation method of dynamical systems to investigate the underlying complex dynamics of traveling wave solutions to a highly nonlinear Fujimoto–Watanabe equation. We identify all bifurcat...In this work, we apply the bifurcation method of dynamical systems to investigate the underlying complex dynamics of traveling wave solutions to a highly nonlinear Fujimoto–Watanabe equation. We identify all bifurcation conditions and phase portraits of the system in different regions of the three-dimensional parametric space, from which we present the sufficient conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, kink-like(antikink-like) wave solutions, and compactons. Furthermore, we obtain their exact expressions and simulations, which can help us understand the underlying physical behaviors of traveling wave solutions to the equation.展开更多
A tensor method for the derivation of the equations of rigid body dynamics, based on the concepts of continuum mechanics, is presented. The formula of time derivative of the inertia tensor with zero corotational rate ...A tensor method for the derivation of the equations of rigid body dynamics, based on the concepts of continuum mechanics, is presented. The formula of time derivative of the inertia tensor with zero corotational rate is used to prove the equivalences of five methods, namely, Lagrange's equations, Nielsen's equations, Gibbs-Appell's equations, Kane's equations and the generalized momentum type of Kane's equations. Some differential identities on angular velocity and angular acceleration are given.展开更多
In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned man...In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.展开更多
Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate e...Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay.展开更多
In this study, we evaluate the values of lattice thermal conductivity κL of type Ⅱ Ge clathrate (Ge34) and diamond phase Ge crystal (d-Ce) with the equilibrium molecular dynamics (EMD) method and the Slack's ...In this study, we evaluate the values of lattice thermal conductivity κL of type Ⅱ Ge clathrate (Ge34) and diamond phase Ge crystal (d-Ce) with the equilibrium molecular dynamics (EMD) method and the Slack's equation. The key parameters of the Slack's equation are derived from the thermodynamic properties obtained from the lattice dynamics (LD) calculations. The empirical Tersoff's potential is used in both EMD and LD simulations. The thermal conductivities of d-Ge calculated by both methods are in accordance with the experimental values. The predictions of the Slack's equation are consistent with the EMD results above 250 K for both Ge34 and d-Ge. In a temperature range of 200-1000 K, the κL value of d-Ge is about several times larger than that of Ge34.展开更多
The exact equation of state (EOS) for the fission gas Xe is necessary for the accurate prediction of the fission gas behavior in uranium dioxide nuclear fuel, However, the comparison with the experimental data indic...The exact equation of state (EOS) for the fission gas Xe is necessary for the accurate prediction of the fission gas behavior in uranium dioxide nuclear fuel, However, the comparison with the experimental data indicates that the applicable pressure ranges of existing EOS for Xe published in the literature cannot cover the overpressure of the rim fission gas bubble at the typical UO2 fuel pellet rim structure. Based on the interatomic potential of Xe, the pressure-volume-temperature data are calculated by the molecular dynamics (MD) simulation. The results indicate that the data of MD simulation with Ross and McMahan's potential [M. Ross and A. K. McMahan 1980 Phys. Rev. B 21 1658] are in good agreement with the experimental data. A preferable EOS for Xe is proposed based on the MD simulation. The comparison with the MD simulation data shows that the proposed EOS can be applied at pressures up to 550 MPa and 3 GPa and temperatures 900 K and 1373 K respectively. The applicable pressure range of this EOS is wider than those of the other existing EOS for Xe published in the literature.展开更多
The dot product of the bases vectors on the super-surface of the non-linear nonholonomic constraints with one order, expressed by quasi-coorfinates, and Mishirskiiequalions are regarded as the fundamental equations of...The dot product of the bases vectors on the super-surface of the non-linear nonholonomic constraints with one order, expressed by quasi-coorfinates, and Mishirskiiequalions are regarded as the fundamental equations of dynamics with non-linear andnon-holononlic constraints in one order for the system of the variable mass. From thesethe variant ddferential-equations of dynamics expressed by quasi-coordinates arederived. The fundamental equations of dynamics are compatible with the principle ofJourdain. A case is cited.展开更多
In this article we derive a general differential equation that describes long-term economic growth in terms of cyclical and trend components. Equation is based on the model of non-linear accelerator of induced investm...In this article we derive a general differential equation that describes long-term economic growth in terms of cyclical and trend components. Equation is based on the model of non-linear accelerator of induced investment. A scheme is proposed for obtaining approximate solutions of nonlinear differential equation by splitting solution into the rapidly oscillating business cycles and slowly varying trend using Krylov-Bogoliubov-Mitropolsky averaging. Simplest modes of the economic system are described. Characteristics of the bifurcation point are found and bifurcation phenomenon is interpreted as loss of stability making the economic system available to structural change and accepting innovations. System being in a nonequilibrium state has a dynamics with self-sustained undamped oscillations. The model is verified with economic development of the US during the fifth Kondratieff cycle (1982-2010). Model adequately describes real process of economic growth in both quantitative and qualitative aspects. It is one of major results that the model gives a rough estimation of critical points of system stability loss and falling into a crisis recession. The model is used to forecast the macroeconomic dynamics of the US during the sixth Kondratieff cycle (2018-2050). For this forecast we use fixed production capital functional dependence on a long-term Kondratieff cycle and medium-term Juglar and Kuznets cycles. More accurate estimations of the time of crisis and recession are based on the model of accelerating log-periodic oscillations. The explosive growth of the prices of highly liquid commodities such as gold and oil is taken as real predictors of the global financial crisis. The second wave of crisis is expected to come in June 2011.展开更多
In this paper, We show for isentropic equations of gas dynamics with adiabatic exponent gamma=3 that approximations of weak solutions generated by large time step Godunov's scheme or Glimm's scheme give entrop...In this paper, We show for isentropic equations of gas dynamics with adiabatic exponent gamma=3 that approximations of weak solutions generated by large time step Godunov's scheme or Glimm's scheme give entropy solution in the limit if Courant number is less than or equal to 1.展开更多
文摘This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback attractors on the tails estimates, and the asymptotic compactness of the random dynamical system is proved by decomposition method, and then we obtain the existence of a random attractor.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
基金Supported by Russian Fund of Fund amental Investigations(Pr.990101064)and Russian Minister of Educatin
文摘In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarantee of computations with a given precision. The equations of programmed constraints and those of constraint perturbations are defined. The stability of the programmed manifold for numerical solutions of the kinematical and dynamical equations is obtained by corresponding construction of the constraint perturbation equations. The dynamical equations of system with programmed constraints are set up in the form of Lagrange’s equations in generalized coordinates. Certain inverse problems of rigid body dynamics are examined.
基金supported by the National Natural Science Foundation of China(10471050)the National 973 Project of China (2006CB805902)+1 种基金University Special Research Fund for Ph.DProgram (20060574002)Guangdong Provincial Natural Science Foundation (7005795, 031495)
文摘In this article, using coordinate transformation and Gronwall inequality, we study the vortex motion law of the anisotropic Cinzburg-Landau equation in a smooth bounded domain Ω (R^2,that is ,Эtuε=j,k=1∑2(ajkЭxkuε)xj+ε^2^-b(x)(1-|uε|^2)uε,x∈Ω,and conclude that each vortex,bj(t)(j=1,2,…,N)satisfies dt^-dbj(t)=-(a(bj(t))^-a1k(bj(t))Эxka(bj(t)),a(aj(t))^-a2k(bj(t))Эxka(bj(t))),where a(x)=√a11a22-a12^2. We prove that all the vortices are pinned together to the critical points of a(x). Furthermore, we prove that these critical points can not be the maximum points.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035,11171038,and 10771019)the Science Reaearch Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant No. 2012MS0102)
文摘In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant No.11072242)the Key Scientific Studies Program of Hebei Province Higher Education Institute,China(Grant No.ZD2018301)Cangzhou National Science Foundation,China(Grant No.177000001)
文摘In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al. [College Phys. 4 7(1985)] obtained the most simple and convenient approximate formula, known as the Zhu–Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard–Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu–Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.
基金The project supported by National Natural Science Foundations of China under Grant Nos. 90203001, 10475055, 40305009, and 10547124
文摘By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena.
文摘A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional constraint violation stabilization method are determined according to the integration time step size and Taylor expansion method automatically. The direct integration method, the traditional constraint violation stabilization method and the new method presented in this paper are compared finally.
文摘China's first interest rate hike during the last decade, aiming to cool down the seemingly overheated real estate market, had aroused more caution on housing market. This paper aims to analyze the housing price dynamics after an unanticipated economic shock, which was believed to have similar properties with the backward-looking expecta- tion models. The analysis of the housing price dynamics is based on the cobweb model with a simple user cost affected demand and a stock-flow supply assumption. Several nth- order delay rational difference equations are set up to illustrate the properties of housing dynamics phenomena, such as the equilibrium or oscillations, overshoot or undershoot and convergent or divergent, for a kind of heterogeneous backward-looking expectation models. The results show that demand elasticity is less than supply elasticity is not a necessary condition for the occurrence of oscillation. The housing price dynamics will vary substantially with the heterogeneous backward-looking expectation assumption and some other endogenous factors.
基金The work of A.Kurganov was supported in part by the National Natural Science Foundation of China grant 11771201by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001).
文摘We introduce adaptive moving mesh central-upwind schemes for one-and two-dimensional hyperbolic systems of conservation and balance laws.The proposed methods consist of three steps.First,the solution is evolved by solving the studied system by the second-order semi-discrete central-upwind scheme on either the one-dimensional nonuniform grid or the two-dimensional structured quadrilateral mesh.When the evolution step is complete,the grid points are redistributed according to the moving mesh differential equation.Finally,the evolved solution is projected onto the new mesh in a conservative manner.The resulting adaptive moving mesh methods are applied to the one-and two-dimensional Euler equations of gas dynamics and granular hydrodynamics systems.Our numerical results demonstrate that in both cases,the adaptive moving mesh central-upwind schemes outperform their uniform mesh counterparts.
基金Foundation Item:National Science Foundation (DMS 1025417), Desert Research Institute (IR& D)Acknowledgments: This paper does not necessarily reflect the view of the NSF or DRI.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11701191 and 11871232)the Program for Innovative Research Team in Science and Technology in University of Fujian Province,Quanzhou High-Level Talents Support Plan(Grant No.2017ZT012)the Subsidized Project for Cultivating Postgraduates’ Innovative Ability in Scientific Research of Huaqiao University
文摘In this work, we apply the bifurcation method of dynamical systems to investigate the underlying complex dynamics of traveling wave solutions to a highly nonlinear Fujimoto–Watanabe equation. We identify all bifurcation conditions and phase portraits of the system in different regions of the three-dimensional parametric space, from which we present the sufficient conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, kink-like(antikink-like) wave solutions, and compactons. Furthermore, we obtain their exact expressions and simulations, which can help us understand the underlying physical behaviors of traveling wave solutions to the equation.
文摘A tensor method for the derivation of the equations of rigid body dynamics, based on the concepts of continuum mechanics, is presented. The formula of time derivative of the inertia tensor with zero corotational rate is used to prove the equivalences of five methods, namely, Lagrange's equations, Nielsen's equations, Gibbs-Appell's equations, Kane's equations and the generalized momentum type of Kane's equations. Some differential identities on angular velocity and angular acceleration are given.
基金sponsored by Bureau Veritas under the administration of Dr.ime Malenica
文摘In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.
基金supported by the Natural Science Foundation of Tianjin(Grant No.16JCYBJC23000)the Open Foundation of the Key Laboratory for Ecological Environment in Coastal Areas of the State Oceanic Administration(Grant No.201604)Science and Technology Foundation for Young Scholars from Tianjin Fisheries Bureau(Grant No.J2014-05)
文摘Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-H20)
文摘In this study, we evaluate the values of lattice thermal conductivity κL of type Ⅱ Ge clathrate (Ge34) and diamond phase Ge crystal (d-Ce) with the equilibrium molecular dynamics (EMD) method and the Slack's equation. The key parameters of the Slack's equation are derived from the thermodynamic properties obtained from the lattice dynamics (LD) calculations. The empirical Tersoff's potential is used in both EMD and LD simulations. The thermal conductivities of d-Ge calculated by both methods are in accordance with the experimental values. The predictions of the Slack's equation are consistent with the EMD results above 250 K for both Ge34 and d-Ge. In a temperature range of 200-1000 K, the κL value of d-Ge is about several times larger than that of Ge34.
基金Project supported by the National Natural Science Foundation of China (Grant No.11205146)
文摘The exact equation of state (EOS) for the fission gas Xe is necessary for the accurate prediction of the fission gas behavior in uranium dioxide nuclear fuel, However, the comparison with the experimental data indicates that the applicable pressure ranges of existing EOS for Xe published in the literature cannot cover the overpressure of the rim fission gas bubble at the typical UO2 fuel pellet rim structure. Based on the interatomic potential of Xe, the pressure-volume-temperature data are calculated by the molecular dynamics (MD) simulation. The results indicate that the data of MD simulation with Ross and McMahan's potential [M. Ross and A. K. McMahan 1980 Phys. Rev. B 21 1658] are in good agreement with the experimental data. A preferable EOS for Xe is proposed based on the MD simulation. The comparison with the MD simulation data shows that the proposed EOS can be applied at pressures up to 550 MPa and 3 GPa and temperatures 900 K and 1373 K respectively. The applicable pressure range of this EOS is wider than those of the other existing EOS for Xe published in the literature.
文摘The dot product of the bases vectors on the super-surface of the non-linear nonholonomic constraints with one order, expressed by quasi-coorfinates, and Mishirskiiequalions are regarded as the fundamental equations of dynamics with non-linear andnon-holononlic constraints in one order for the system of the variable mass. From thesethe variant ddferential-equations of dynamics expressed by quasi-coordinates arederived. The fundamental equations of dynamics are compatible with the principle ofJourdain. A case is cited.
文摘In this article we derive a general differential equation that describes long-term economic growth in terms of cyclical and trend components. Equation is based on the model of non-linear accelerator of induced investment. A scheme is proposed for obtaining approximate solutions of nonlinear differential equation by splitting solution into the rapidly oscillating business cycles and slowly varying trend using Krylov-Bogoliubov-Mitropolsky averaging. Simplest modes of the economic system are described. Characteristics of the bifurcation point are found and bifurcation phenomenon is interpreted as loss of stability making the economic system available to structural change and accepting innovations. System being in a nonequilibrium state has a dynamics with self-sustained undamped oscillations. The model is verified with economic development of the US during the fifth Kondratieff cycle (1982-2010). Model adequately describes real process of economic growth in both quantitative and qualitative aspects. It is one of major results that the model gives a rough estimation of critical points of system stability loss and falling into a crisis recession. The model is used to forecast the macroeconomic dynamics of the US during the sixth Kondratieff cycle (2018-2050). For this forecast we use fixed production capital functional dependence on a long-term Kondratieff cycle and medium-term Juglar and Kuznets cycles. More accurate estimations of the time of crisis and recession are based on the model of accelerating log-periodic oscillations. The explosive growth of the prices of highly liquid commodities such as gold and oil is taken as real predictors of the global financial crisis. The second wave of crisis is expected to come in June 2011.
基金Supported in part by the National Natural Science of China, NSF Grant No. DMS-8657319.
文摘In this paper, We show for isentropic equations of gas dynamics with adiabatic exponent gamma=3 that approximations of weak solutions generated by large time step Godunov's scheme or Glimm's scheme give entropy solution in the limit if Courant number is less than or equal to 1.