The present research aims to assess the capability of a comprehensive Euler/Lagrange approach for predicting gas-solid flows and the associated solid particle erosion.The open-source code OpenFOAM®4.1 was used to...The present research aims to assess the capability of a comprehensive Euler/Lagrange approach for predicting gas-solid flows and the associated solid particle erosion.The open-source code OpenFOAM®4.1 was used to carry out the numerical simulations,where the standard Lagrangian libraries were substantially extended to account for all necessary models.Particles are tracked considering both translational and rotational motion as well as all relevant forces,such as gravity/buoyancy,drag and transverse lift due to shear and particle rotation.The tracking time step was dynamically adapted ac-cording to the locally relevant time scales,which drastically reduces computational times.Stochastic approaches are adopted to model particle turbulent dispersion,particle collisions with rough walls and particle-particle interactions.Five solid particle erosion models,available in the literature,were considered to estimate pipe bend erosion.Three study cases are provided to validate the adopted nu-merical approach and erosion models extensively.The first case intends to evaluate the ability of the extended CFD code to predict the behaviour of gas-solid flows in pneumatic conveying systems.This goal is achieved by comparing the numerical results with the experimental data obtained by Huber(1997)and Huber and Sommerfeld(1994,1998)in a pneumatic conveying system.Here,the importance of considering inter-particle collisions and surface roughness for predicting particle velocity,mass flux and mean diameter distributions in gas-solid flows is highlighted.The second and third case intend to evaluate the ability of the erosion models in estimating bend erosion in diluted gas-solid flows.The erosion data obtained experimentally by Mazumder et al.(2008)and Solnordal et al.(2015)in very dilut pneumatic conveying systems is used for validating the numerical results,neglecting now inter-particle collisions and two-way coupling.Besides a comprehensive analysis of the different influential properties on erosion,the innovation of the present study is as follows.For the first time also a temporal modifi-cation of the surface roughness due to the erosion was considered in the simulations obtained from previous measurements(Novelletto Ricardo&Sommerfeld,2020).As the surface roughness is increased due to erosion,eventually erosion rate becomes lower.This is the result of diminishing wall collision frequency.Simulations for several degrees of surface roughness showed that larger roughness is coupled with a drastic reduction of erosion.Hence,numerical simulations neglecting wall surface roughness are not realistic.The consideration of a particle size distribution instead of mono-sized computations showed a possible reduction of erosion rate.The detailed analysis of the different single-particle erosion models revealed that the model proposed by Oka et al.(2005)and Oka and Yoshida(2005)yields the best agreement with the measurements,however particle and wall properties are needed.展开更多
A 3-D forecasting model for oil-spill is developed using the finite difference method to numerically solve the shallow water equation. The instantaneous flow distribution in the studied area is calculated and the traj...A 3-D forecasting model for oil-spill is developed using the finite difference method to numerically solve the shallow water equation. The instantaneous flow distribution in the studied area is calculated and the trajectory of the oil-slick centroid is predicted by means of Lagrange’s method. The computed results agree with the observed data well, this shows that this 3-D forecasting model has high accuracy.展开更多
电力系统运行在非理想状态时,容易产生短暂的电压波动,此时并联有源电力滤波器(shunt active power filter,SAPF)采用无源控制策略无法高效、精确地调节电能质量,而常规滑模控制又容易引起抖振。针对上述情况,将无源控制和抗干扰能力更...电力系统运行在非理想状态时,容易产生短暂的电压波动,此时并联有源电力滤波器(shunt active power filter,SAPF)采用无源控制策略无法高效、精确地调节电能质量,而常规滑模控制又容易引起抖振。针对上述情况,将无源控制和抗干扰能力更强的超螺旋二阶滑模控制相结合,提出了一种无源超螺旋二阶滑模控制策略。首先,根据有源电力滤波器的数学模型建立基于正负序分离的欧拉−拉格朗日模型;其次,对系统的模型进行了无源性分析,且根据其无源性设计了无源控制器,同时采用超螺旋二阶滑模控制对无源控制器进一步优化,提高了系统整体的鲁棒性和抗干扰能力;最后,在理想状态和负载突变、负载不平衡、电网电压不平衡、单相电压突变4种非理想状态下,通过仿真实验验证了无源超螺旋二阶滑模控制策略的有效性和优越性。展开更多
向无源网络供电的模块化多电平换流器型高压直流输电(modular multilevel converter based HVDC,MMC-HVDC)系统是柔性直流输电技术的一个重要应用领域,因此有必要对其控制与保护策略进行研究。基于MMC电磁暂态数学模型,建立了d-q同步旋...向无源网络供电的模块化多电平换流器型高压直流输电(modular multilevel converter based HVDC,MMC-HVDC)系统是柔性直流输电技术的一个重要应用领域,因此有必要对其控制与保护策略进行研究。基于MMC电磁暂态数学模型,建立了d-q同步旋转坐标系下MMC欧拉?拉格朗日(Euler-Lagrange,EL)数学模型,推导了适于MMC控制的无源控制规律,设计了内环电流无源控制器及向无源网络供电的MMC-HVDC系统定交流电压控制器。针对电网电压不平衡或交流系统不对称故障引起的负序电流,提出了基于EL模型的正负序电流无源控制器。为保证故障时系统能满足安全运行的条件,提出了故障时的控制保护策略。最后在PSCAD/EMTDC中对MMC-HVDC系统各种运行工况进行了仿真验证,并对正负序无源控制器和矢量控制器的控制性能做了仿真对比,仿真结果表明,所提出的控制器和控制保护策略具有良好的动稳态控制性能,便于工程实际应用。展开更多
文摘The present research aims to assess the capability of a comprehensive Euler/Lagrange approach for predicting gas-solid flows and the associated solid particle erosion.The open-source code OpenFOAM®4.1 was used to carry out the numerical simulations,where the standard Lagrangian libraries were substantially extended to account for all necessary models.Particles are tracked considering both translational and rotational motion as well as all relevant forces,such as gravity/buoyancy,drag and transverse lift due to shear and particle rotation.The tracking time step was dynamically adapted ac-cording to the locally relevant time scales,which drastically reduces computational times.Stochastic approaches are adopted to model particle turbulent dispersion,particle collisions with rough walls and particle-particle interactions.Five solid particle erosion models,available in the literature,were considered to estimate pipe bend erosion.Three study cases are provided to validate the adopted nu-merical approach and erosion models extensively.The first case intends to evaluate the ability of the extended CFD code to predict the behaviour of gas-solid flows in pneumatic conveying systems.This goal is achieved by comparing the numerical results with the experimental data obtained by Huber(1997)and Huber and Sommerfeld(1994,1998)in a pneumatic conveying system.Here,the importance of considering inter-particle collisions and surface roughness for predicting particle velocity,mass flux and mean diameter distributions in gas-solid flows is highlighted.The second and third case intend to evaluate the ability of the erosion models in estimating bend erosion in diluted gas-solid flows.The erosion data obtained experimentally by Mazumder et al.(2008)and Solnordal et al.(2015)in very dilut pneumatic conveying systems is used for validating the numerical results,neglecting now inter-particle collisions and two-way coupling.Besides a comprehensive analysis of the different influential properties on erosion,the innovation of the present study is as follows.For the first time also a temporal modifi-cation of the surface roughness due to the erosion was considered in the simulations obtained from previous measurements(Novelletto Ricardo&Sommerfeld,2020).As the surface roughness is increased due to erosion,eventually erosion rate becomes lower.This is the result of diminishing wall collision frequency.Simulations for several degrees of surface roughness showed that larger roughness is coupled with a drastic reduction of erosion.Hence,numerical simulations neglecting wall surface roughness are not realistic.The consideration of a particle size distribution instead of mono-sized computations showed a possible reduction of erosion rate.The detailed analysis of the different single-particle erosion models revealed that the model proposed by Oka et al.(2005)and Oka and Yoshida(2005)yields the best agreement with the measurements,however particle and wall properties are needed.
文摘A 3-D forecasting model for oil-spill is developed using the finite difference method to numerically solve the shallow water equation. The instantaneous flow distribution in the studied area is calculated and the trajectory of the oil-slick centroid is predicted by means of Lagrange’s method. The computed results agree with the observed data well, this shows that this 3-D forecasting model has high accuracy.
文摘电力系统运行在非理想状态时,容易产生短暂的电压波动,此时并联有源电力滤波器(shunt active power filter,SAPF)采用无源控制策略无法高效、精确地调节电能质量,而常规滑模控制又容易引起抖振。针对上述情况,将无源控制和抗干扰能力更强的超螺旋二阶滑模控制相结合,提出了一种无源超螺旋二阶滑模控制策略。首先,根据有源电力滤波器的数学模型建立基于正负序分离的欧拉−拉格朗日模型;其次,对系统的模型进行了无源性分析,且根据其无源性设计了无源控制器,同时采用超螺旋二阶滑模控制对无源控制器进一步优化,提高了系统整体的鲁棒性和抗干扰能力;最后,在理想状态和负载突变、负载不平衡、电网电压不平衡、单相电压突变4种非理想状态下,通过仿真实验验证了无源超螺旋二阶滑模控制策略的有效性和优越性。
文摘向无源网络供电的模块化多电平换流器型高压直流输电(modular multilevel converter based HVDC,MMC-HVDC)系统是柔性直流输电技术的一个重要应用领域,因此有必要对其控制与保护策略进行研究。基于MMC电磁暂态数学模型,建立了d-q同步旋转坐标系下MMC欧拉?拉格朗日(Euler-Lagrange,EL)数学模型,推导了适于MMC控制的无源控制规律,设计了内环电流无源控制器及向无源网络供电的MMC-HVDC系统定交流电压控制器。针对电网电压不平衡或交流系统不对称故障引起的负序电流,提出了基于EL模型的正负序电流无源控制器。为保证故障时系统能满足安全运行的条件,提出了故障时的控制保护策略。最后在PSCAD/EMTDC中对MMC-HVDC系统各种运行工况进行了仿真验证,并对正负序无源控制器和矢量控制器的控制性能做了仿真对比,仿真结果表明,所提出的控制器和控制保护策略具有良好的动稳态控制性能,便于工程实际应用。