In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and dedu...In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and deduce the corresponding special cases.展开更多
In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions...In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions are given.By using these generating functions and some identities,relations among trigonometric functions and two parametric kinds of Bell-based Bernoulli and Euler polynomials,Stirling numbers are presented.Computational formulae for these polynomials are obtained.Applying a partial derivative operator to these generating functions,some derivative formulae and finite combinatorial sums involving the aforementioned polynomials and numbers are also obtained.In addition,some remarks and observations on these polynomials are given.展开更多
Utilization of the shift operator to represent Euler polynomials as polynomials of Appell type leads directly to its algebraic properties, its relations with powers sums;may be all its relations with Bernoulli polynom...Utilization of the shift operator to represent Euler polynomials as polynomials of Appell type leads directly to its algebraic properties, its relations with powers sums;may be all its relations with Bernoulli polynomials, Bernoulli numbers;its recurrence formulae and a very simple formula for calculating simultaneously Euler numbers and Euler polynomials. The expansions of Euler polynomials into Fourier series are also obtained;the formulae for obtaining all π<sup>m</sup> as series on k<sup>-m</sup> and for expanding functions into series of Euler polynomials.展开更多
Using the generating functions, we prove some symmetry identities for the Euler polynomials and higher order Euler polynomials, which generalize the multiplication theorem for the Euler polynomials. Also we obtain som...Using the generating functions, we prove some symmetry identities for the Euler polynomials and higher order Euler polynomials, which generalize the multiplication theorem for the Euler polynomials. Also we obtain some relations between the Bernoulli polynomials, Euler polynomials, power sum, alternating sum and Genocchi numbers.展开更多
In this paper, one introduces the polynomials R<sub>n</sub>(x) and numbers R<sub>n</sub> and derives some interesting identities related to the numbers and polynomials: R<sub>n</sub>...In this paper, one introduces the polynomials R<sub>n</sub>(x) and numbers R<sub>n</sub> and derives some interesting identities related to the numbers and polynomials: R<sub>n</sub> and R<sub>n</sub>(x). We also give relation between the Stirling numbers, the Bell numbers, the R<sub>n</sub> and R<sub>n</sub>(x).展开更多
基金Supported by the PCSIRT of Education of China(IRT0621)Supported by the Innovation Program of Shanghai Municipal Education Committee of China(08ZZ24)Supported by the Henan Innovation Project for University Prominent Research Talents of China(2007KYCX0021)
文摘In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and deduce the corresponding special cases.
基金funded by Research Deanship at the University of Ha’il,Saudi Arabia,through Project No.RG-21144.
文摘In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions are given.By using these generating functions and some identities,relations among trigonometric functions and two parametric kinds of Bell-based Bernoulli and Euler polynomials,Stirling numbers are presented.Computational formulae for these polynomials are obtained.Applying a partial derivative operator to these generating functions,some derivative formulae and finite combinatorial sums involving the aforementioned polynomials and numbers are also obtained.In addition,some remarks and observations on these polynomials are given.
文摘Utilization of the shift operator to represent Euler polynomials as polynomials of Appell type leads directly to its algebraic properties, its relations with powers sums;may be all its relations with Bernoulli polynomials, Bernoulli numbers;its recurrence formulae and a very simple formula for calculating simultaneously Euler numbers and Euler polynomials. The expansions of Euler polynomials into Fourier series are also obtained;the formulae for obtaining all π<sup>m</sup> as series on k<sup>-m</sup> and for expanding functions into series of Euler polynomials.
基金Supported by the Natural Science Foundation of Gansu Province (Grant No. 3ZS041-A25-007)
文摘Using the generating functions, we prove some symmetry identities for the Euler polynomials and higher order Euler polynomials, which generalize the multiplication theorem for the Euler polynomials. Also we obtain some relations between the Bernoulli polynomials, Euler polynomials, power sum, alternating sum and Genocchi numbers.
文摘In this paper, one introduces the polynomials R<sub>n</sub>(x) and numbers R<sub>n</sub> and derives some interesting identities related to the numbers and polynomials: R<sub>n</sub> and R<sub>n</sub>(x). We also give relation between the Stirling numbers, the Bell numbers, the R<sub>n</sub> and R<sub>n</sub>(x).