This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification o...This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.展开更多
This paper presents, an efficient approach for solving Euler-Lagrange Equation which arises from calculus of variations. Homotopy analysis method to find an approximate solution of variational problems is proposed. An...This paper presents, an efficient approach for solving Euler-Lagrange Equation which arises from calculus of variations. Homotopy analysis method to find an approximate solution of variational problems is proposed. An optimal value of the convergence control parameter is given through the square residual error. By minimizing the the square residual error, the optimal convergence-control parameters can be obtained. It is showed that the homotopy analysis method was valid and feasible to the study of variational problems.展开更多
The variational statement of synthesis problem is generalized in order to account the additional requirements to the synthesized radiation pattern (RP) and field distribution in the specified points of near zone. For ...The variational statement of synthesis problem is generalized in order to account the additional requirements to the synthesized radiation pattern (RP) and field distribution in the specified points of near zone. For this aim, the minimizing functional is supplemented by term providing the possibility to minimize the values of field in these points;creating the deep zeros in the RP for the certain angular coordinates is realized too. The approach foresees reduction of an explicit formula for field values in a near zone. The results of computational modeling testify the possibility to create zeros in the given RP and to minimize the values of field in a near zone of plane arrays in a great extent.展开更多
To help swimmers improve, we have developed a computational swimming model using underwater manipulator dynamics. We formulate the equations of the underwater manipulator dynamics using the fluid drag, which is propor...To help swimmers improve, we have developed a computational swimming model using underwater manipulator dynamics. We formulate the equations of the underwater manipulator dynamics using the fluid drag, which is proportional to the square of the velocity. We construct a swimming model consisting of several links based on these equations. The distance traveled by the optimal swimming motion is derived using the model. The input parameters are the joint torques. The arm and leg positions in the model are determined from the joint torques. The force transmitted from the water to the manipulator is defined to be the action force, and the force transmitted from the manipulator to the water is defined to be the reaction force. This reaction force is defined to be the propulsion force. By combining the propulsion force generated by the arms and legs and the frictional drag with respect to the body we can calculate the distance traveled. To optimize the propulsion, which depends on the swimmer’s motion, a variational approach using the Lagrange function is applied. We can use the model to simulate 2D pseudo-backstroke motion. Our model has a lower cost than other techniques in the literature, because it does not require computational fluid dynamics (CFD). The swimmer velocity calculated by our model agrees quite closely with the results in the literature. The model qualitatively captures the movement of an actual swimmer.展开更多
Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous...Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper.展开更多
The ion-acoustic solitary wave in collisionless unmagnetized plasma consisting of warm ions-fluid and isothermal electrons is studied using the time fractional KdV equation. The reductive perturbation method has been ...The ion-acoustic solitary wave in collisionless unmagnetized plasma consisting of warm ions-fluid and isothermal electrons is studied using the time fractional KdV equation. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude ion-acoustic wave in warm plasma. The Lagrangian of the time fractional KdV equation is used in a similar form to the Lagrangian of the regular KdV equation with fractional derivative for the time differentiation. The variation of the functional of this Lagrangian leads to the Euler-Lagrange equation that gives the time fractional KdV equation. The variational-iteration method is used to solve the derived time fractional KdV equation. The calculations of the solution are carried out for different values of the time fractional order. These calculations show that the time fractional can be used to modulate the electrostatic potential wave instead of adding a higher order dissipation term to the KdV equation. The results of the present investigation may be applicable to some plasma environments, such as the ionosphere plasma.展开更多
In order to decrease the fluid drag on an underwater robot manipulator, an optimal trajectory method based on the variational method is presented. By introducing the adjoint variables, which are Lagrange multipliers, ...In order to decrease the fluid drag on an underwater robot manipulator, an optimal trajectory method based on the variational method is presented. By introducing the adjoint variables, which are Lagrange multipliers, we formulate a Lagrange function under certain constraints related to the target angle, target angular velocity, and dynamic equation of the robot manipulator. The state equation (the partial differentiation of the Lagrange function with respect to the state variables), adjoint equation (the partial differentiation of the Lagrange function with respect to the adjoint variables), and sensitivity equation (the partial differentiation of the Lagrange function with respect to torques) can be derived from the stationary conditions of the Lagrange function. Using the state equation, we can calculate the state variables (angles, angular velocities, and angular acceleration) at every time step in the forward time direction. These state variables are stored as data at every time step. Next, by using the adjoint equation, we can calculate the adjoint variables by using these state variables at every time step in the backward time direction. These adjoint variables are stored as data at every time step. Third, the sensitivity equation is calculated by using both the state variables and the adjoint variables. Finally, the optimal trajectory of the manipulator is obtained using the sensitivities. The proposed method is applied to the problem of two-link manipulators. It can obtain the optimal drag reduction trajectory of the manipulator under the constraints mentioned above.展开更多
A consistent focus in theoretical mechanics has been on how to apply Lagrange's equation to continuum mechanics.This paper uses the concept of a variational derivative and its laws of operation to investigate the ...A consistent focus in theoretical mechanics has been on how to apply Lagrange's equation to continuum mechanics.This paper uses the concept of a variational derivative and its laws of operation to investigate the derivation of Lagrange's equation,which is then applied to nonlinear elasto-dynamics.In accordance with the work-energy principle and the energy conservation law,kinetic and potential energies are proposed for rigid-elastic coupling dynamics,whose governing equation is established by manipulating Lagrange's equation.In addition,case studies are used to demonstrate the application of the proposed method to spacecraft dynamics.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10771019 and 10826107)
文摘This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.
文摘This paper presents, an efficient approach for solving Euler-Lagrange Equation which arises from calculus of variations. Homotopy analysis method to find an approximate solution of variational problems is proposed. An optimal value of the convergence control parameter is given through the square residual error. By minimizing the the square residual error, the optimal convergence-control parameters can be obtained. It is showed that the homotopy analysis method was valid and feasible to the study of variational problems.
文摘The variational statement of synthesis problem is generalized in order to account the additional requirements to the synthesized radiation pattern (RP) and field distribution in the specified points of near zone. For this aim, the minimizing functional is supplemented by term providing the possibility to minimize the values of field in these points;creating the deep zeros in the RP for the certain angular coordinates is realized too. The approach foresees reduction of an explicit formula for field values in a near zone. The results of computational modeling testify the possibility to create zeros in the given RP and to minimize the values of field in a near zone of plane arrays in a great extent.
文摘To help swimmers improve, we have developed a computational swimming model using underwater manipulator dynamics. We formulate the equations of the underwater manipulator dynamics using the fluid drag, which is proportional to the square of the velocity. We construct a swimming model consisting of several links based on these equations. The distance traveled by the optimal swimming motion is derived using the model. The input parameters are the joint torques. The arm and leg positions in the model are determined from the joint torques. The force transmitted from the water to the manipulator is defined to be the action force, and the force transmitted from the manipulator to the water is defined to be the reaction force. This reaction force is defined to be the propulsion force. By combining the propulsion force generated by the arms and legs and the frictional drag with respect to the body we can calculate the distance traveled. To optimize the propulsion, which depends on the swimmer’s motion, a variational approach using the Lagrange function is applied. We can use the model to simulate 2D pseudo-backstroke motion. Our model has a lower cost than other techniques in the literature, because it does not require computational fluid dynamics (CFD). The swimmer velocity calculated by our model agrees quite closely with the results in the literature. The model qualitatively captures the movement of an actual swimmer.
文摘Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper.
文摘The ion-acoustic solitary wave in collisionless unmagnetized plasma consisting of warm ions-fluid and isothermal electrons is studied using the time fractional KdV equation. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude ion-acoustic wave in warm plasma. The Lagrangian of the time fractional KdV equation is used in a similar form to the Lagrangian of the regular KdV equation with fractional derivative for the time differentiation. The variation of the functional of this Lagrangian leads to the Euler-Lagrange equation that gives the time fractional KdV equation. The variational-iteration method is used to solve the derived time fractional KdV equation. The calculations of the solution are carried out for different values of the time fractional order. These calculations show that the time fractional can be used to modulate the electrostatic potential wave instead of adding a higher order dissipation term to the KdV equation. The results of the present investigation may be applicable to some plasma environments, such as the ionosphere plasma.
文摘In order to decrease the fluid drag on an underwater robot manipulator, an optimal trajectory method based on the variational method is presented. By introducing the adjoint variables, which are Lagrange multipliers, we formulate a Lagrange function under certain constraints related to the target angle, target angular velocity, and dynamic equation of the robot manipulator. The state equation (the partial differentiation of the Lagrange function with respect to the state variables), adjoint equation (the partial differentiation of the Lagrange function with respect to the adjoint variables), and sensitivity equation (the partial differentiation of the Lagrange function with respect to torques) can be derived from the stationary conditions of the Lagrange function. Using the state equation, we can calculate the state variables (angles, angular velocities, and angular acceleration) at every time step in the forward time direction. These state variables are stored as data at every time step. Next, by using the adjoint equation, we can calculate the adjoint variables by using these state variables at every time step in the backward time direction. These adjoint variables are stored as data at every time step. Third, the sensitivity equation is calculated by using both the state variables and the adjoint variables. Finally, the optimal trajectory of the manipulator is obtained using the sensitivities. The proposed method is applied to the problem of two-link manipulators. It can obtain the optimal drag reduction trajectory of the manipulator under the constraints mentioned above.
基金supported by the National Natural Science Foundation of China(Grant No.10272034)
文摘A consistent focus in theoretical mechanics has been on how to apply Lagrange's equation to continuum mechanics.This paper uses the concept of a variational derivative and its laws of operation to investigate the derivation of Lagrange's equation,which is then applied to nonlinear elasto-dynamics.In accordance with the work-energy principle and the energy conservation law,kinetic and potential energies are proposed for rigid-elastic coupling dynamics,whose governing equation is established by manipulating Lagrange's equation.In addition,case studies are used to demonstrate the application of the proposed method to spacecraft dynamics.