For any scheme M with a perfect obstruction theory,Jiang and Thomas associated a scheme N with a symmetric perfect obstruction theory.The scheme N is a cone over M given by the dual of the obstruction sheaf of M,and c...For any scheme M with a perfect obstruction theory,Jiang and Thomas associated a scheme N with a symmetric perfect obstruction theory.The scheme N is a cone over M given by the dual of the obstruction sheaf of M,and contains M as its zero section.Locally,N is the critical locus of a regular function.In this note we prove that N is a d-critical scheme in the sense of Joyce.There exists a global motive for N locally given by the motive of the vanishing cycle of the local regular function.We prove a motivic localization formula under the good and circle compact C*-action for N.When taking the Euler characteristic,the weighted Euler characteristic of N weighted by the Behrend function is the signed Euler characteristic of M by motivic method.As applications,using the main theorem we study the motivic generating series of the motivic Vafa-Witten invariants for K3 surfaces.展开更多
In this article,by the mean-integral of the conserved quantity,we prove that the one-dimensional non-isentropic gas dynamic equations in an ideal gas state do not possess a bounded invariant region.Moreover,we obtain ...In this article,by the mean-integral of the conserved quantity,we prove that the one-dimensional non-isentropic gas dynamic equations in an ideal gas state do not possess a bounded invariant region.Moreover,we obtain a necessary condition on the state equations for the existence of an invariant region for a non-isentropic process.Finally,we provide a mat hematical example showing that with a special state equation,a bounded invariant region for the non-isentropic process may exist.展开更多
We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inho...We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inhomogeneous Monge-Ampère equation. The purpose of this paper is to construct and classify the common invariant solutions for those equations. For this aim, we have used the results concerning construction and classification of invariant solutions for the (1 + 3)-dimensional P(1,4)-invariant Eikonal equation, since this equation is the simplest among the equations under investigation. The direct checked allowed us to conclude that the majority of invariant solutions of the (1 + 3)-dimensional Eikonal equation, obtained on the base of low-dimensional (dimL ≤ 3) nonconjugate subalgebras of the Lie algebra of the Poincaré group P(1,4), satisfy all the equations under investigation. In this paper, we present obtained common invariant solutions of the equations under study as well as the classification of those invariant solutions.展开更多
The authors consider the local smooth solutions to the isentropic relativistic Euler equations in(3+1)-dimensional space-time for both non-vacuum and vacuum cases.The local existence is proved by symmetrizing the syst...The authors consider the local smooth solutions to the isentropic relativistic Euler equations in(3+1)-dimensional space-time for both non-vacuum and vacuum cases.The local existence is proved by symmetrizing the system and applying the FriedrichsLax-Kato theory of symmetric hyperbolic systems.For the non-vacuum case,according to Godunov,firstly a strictly convex entropy function is solved out,then a suitable symmetrizer to symmetrize the system is constructed.For the vacuum case,since the coefficient matrix blows-up near the vacuum,the authors use another symmetrization which is based on the generalized Riemann invariants and the normalized velocity.展开更多
文摘For any scheme M with a perfect obstruction theory,Jiang and Thomas associated a scheme N with a symmetric perfect obstruction theory.The scheme N is a cone over M given by the dual of the obstruction sheaf of M,and contains M as its zero section.Locally,N is the critical locus of a regular function.In this note we prove that N is a d-critical scheme in the sense of Joyce.There exists a global motive for N locally given by the motive of the vanishing cycle of the local regular function.We prove a motivic localization formula under the good and circle compact C*-action for N.When taking the Euler characteristic,the weighted Euler characteristic of N weighted by the Behrend function is the signed Euler characteristic of M by motivic method.As applications,using the main theorem we study the motivic generating series of the motivic Vafa-Witten invariants for K3 surfaces.
基金supported by the Natural Science Foundation of Zhejiang(LQ18A010004)the second author was supported by the Fundamental Research Funds for the Central Universities(WUT:2020IB011).
文摘In this article,by the mean-integral of the conserved quantity,we prove that the one-dimensional non-isentropic gas dynamic equations in an ideal gas state do not possess a bounded invariant region.Moreover,we obtain a necessary condition on the state equations for the existence of an invariant region for a non-isentropic process.Finally,we provide a mat hematical example showing that with a special state equation,a bounded invariant region for the non-isentropic process may exist.
文摘We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inhomogeneous Monge-Ampère equation. The purpose of this paper is to construct and classify the common invariant solutions for those equations. For this aim, we have used the results concerning construction and classification of invariant solutions for the (1 + 3)-dimensional P(1,4)-invariant Eikonal equation, since this equation is the simplest among the equations under investigation. The direct checked allowed us to conclude that the majority of invariant solutions of the (1 + 3)-dimensional Eikonal equation, obtained on the base of low-dimensional (dimL ≤ 3) nonconjugate subalgebras of the Lie algebra of the Poincaré group P(1,4), satisfy all the equations under investigation. In this paper, we present obtained common invariant solutions of the equations under study as well as the classification of those invariant solutions.
基金supported by the National Natural Science Foundation of China(Nos.11201308,10971135)the Science Foundation for the Excellent Youth Scholars of Shanghai Municipal Education Commission(No.ZZyyy12025)+1 种基金the Innovation Program of Shanghai Municipal Education Commission(No.13zz136)the Science Foundation of Yin Jin Ren Cai of Shanghai Institute of Technology(No.YJ2011-03)
文摘The authors consider the local smooth solutions to the isentropic relativistic Euler equations in(3+1)-dimensional space-time for both non-vacuum and vacuum cases.The local existence is proved by symmetrizing the system and applying the FriedrichsLax-Kato theory of symmetric hyperbolic systems.For the non-vacuum case,according to Godunov,firstly a strictly convex entropy function is solved out,then a suitable symmetrizer to symmetrize the system is constructed.For the vacuum case,since the coefficient matrix blows-up near the vacuum,the authors use another symmetrization which is based on the generalized Riemann invariants and the normalized velocity.