Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans...Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.展开更多
A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain g...A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain gradient, velocity gradient,and couple stress effects, and accounts for the material variation along the axial direction of the two-component functionally graded beam. The governing equations and complete boundary conditions of the AFG beam are derived based on Hamilton's principle. The correctness of the current model is verified by comparing the static behavior results of the current model and the finite element model(FEM) at the micro-scale. The influence of material inhomogeneity and size effect on the static and dynamic responses of the AFG beam is studied. The numerical results show that the static and vibration responses predicted by the newly developed model are different from those based on the classical model at the micro-scale. The new model can be applied not only in the optimization of micro acoustic wave devices but also in the design of AFG micro-sensors and micro-actuators.展开更多
When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key...When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.展开更多
This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and tw...This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses.展开更多
Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we i...Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.展开更多
The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate...The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.展开更多
With the third innovation in science and technology worldwide, China has also experienced thismarvelous progress. Concerning the longwall mining in China, the "masonry beam theory" (MBT) wasfirst proposed in the 1...With the third innovation in science and technology worldwide, China has also experienced thismarvelous progress. Concerning the longwall mining in China, the "masonry beam theory" (MBT) wasfirst proposed in the 1960s, illustrating that the transmission and equilibrium method of overburdenpressure using reserved coal pillar in mined-out areas can be realized. This forms the so-called "121mining method", which lays a solid foundation for development of mining science and technology inChina. The "transfer rock beam theory" (TRBT) proposed in the 1980s gives a further understanding forthe transmission path of stope overburden pressure and pressure distribution in high-stress areas. In thisregard, the advanced 121 mining method was proposed with smaller coal pillar for excavation design,making significant contributions to improvement of the coal recovery rate in that era. In the 21st century,the traditional mining technologies faced great challenges and, under the theoretical developmentspioneered by Profs. Minggao Qian and Zhenqi Song, the "cutting cantilever beam theory" (CCBT) wasproposed in 2008. After that the 110 mining method is formulated subsequently, namely one stope face,after the first mining cycle, needs one advanced gateway excavation, while the other one is automaticallyformed during the last mining cycle without coal pillars left in the mining area. This method can beimplemented using the CCBT by incorporating the key technologies, including the directional presplittingroof cutting, constant resistance and large deformation (CRLD) bolt/anchor supporting systemwith negative Poisson's ratio (NPR) effect material, and remote real-time monitoring technology. TheCCBT and 110 mining method will provide the theoretical and technical basis for the development ofmining industry in China.展开更多
Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects.Previous studies have revealed that using the differential form of th...Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects.Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases,such as bending analysis of cantilevers,and recourse must be made to the integral version.In this article,a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain-and stress-driven integral nonlocal models.This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation.First,the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy.Also,in each case,the governing equation is obtained in both strong and weak forms.To solve numerically the derived equations,matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule.It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes.Also,it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.展开更多
Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equati...Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response.展开更多
A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces...A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.展开更多
A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antiref...A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method.展开更多
Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-le...Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model.展开更多
Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, a...Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, and the results were optimized according to multiple quality objectives by the grey system theory. With bending angle, bending radius and hight difference along the axis direction as variables, orthogonal FE analyses were conducted and the minimum and maximum wall thicknes ses of the billets with different sizes were obtained. Taking the minimum and maximum wall thick nesses as two references, the correlation coefficient between the data for reference and those for comparison by the grey system theory reduced multi objectives to a single quality objective, and the average correlation level of every billet facilitated the optimization of size parameters for hydroform ing car beam. The trial production showed that the optimization approach satisfied the need of hy droforming car beams.展开更多
In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. ...In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end.展开更多
In this study,a new state-based peridynamic formulation is developed for functionally graded Euler-Bernoulli beams.The equation of motion is developed by using Lagrange’s equation and Taylor series.Both axial and tra...In this study,a new state-based peridynamic formulation is developed for functionally graded Euler-Bernoulli beams.The equation of motion is developed by using Lagrange’s equation and Taylor series.Both axial and transverse displacements are taken into account as degrees of freedom.Four different boundary conditions are considered including pinned support-roller support,pinned support-pinned support,clamped-clamped and clamped-free.Peridynamic results are compared against finite element analysis results for transverse and axial deformations and a very good agreement is observed for all different types of boundary conditions.展开更多
Based on the nonlocal continuum theory, the nonlinear vibration of an embedded single-walled carbon nanotube (SWCNT) subjected to a harmonic load is in- vestigated. In the present study, the SWCNT is assumed to be a...Based on the nonlocal continuum theory, the nonlinear vibration of an embedded single-walled carbon nanotube (SWCNT) subjected to a harmonic load is in- vestigated. In the present study, the SWCNT is assumed to be a curved beam, which is unlike previous similar work. Firstly, the governing equations of motion are derived by the Hamilton principle, meanwhile, the Galerkin approach is carried out to convert the nonlinear integral-differential equation into a second-order nonlinear ordinary differ- ential equation. Then, the precise integration method based on the local linearzation is appropriately designed for solving the above dynamic equations. Besides, the numerical example is presented, the effects of the nonlocal parameters, the elastic medium constants, the waviness ratios, and the material lengths on the dynamic response are analyzed. The results show that the above mentioned effects have influences on the dynamic behavior of the SWCNT.展开更多
Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained result...Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.展开更多
A composite beam is symmetric if both the material property and support are symmetric with respect to the middle point. In order to study the free vibration performance of the symmetric composite beams with different ...A composite beam is symmetric if both the material property and support are symmetric with respect to the middle point. In order to study the free vibration performance of the symmetric composite beams with different complex nonsmooth/discontinuous interfaces, we develop an R(x)-orthonormal theory, where R(x) is an integrable flexural rigidity function. The R(x)-orthonormal bases in the linear space of boundary functions are constructed, of which the second-order derivatives of the boundary functions are asked to be orthonormal with respect to the weight function R(x). When the vibration modes of the symmetric composite beam are expressed in terms of the R(x)-orthonormal bases we can derive an eigenvalue problem endowed with a special structure of the coefficient matrix A :=[aij ],aij= 0 if i + j is odd. Based on the special structure we can prove two new theorems, which indicate that the characteristic equation of A can be decomposed into the product of the characteristic equations of two sub-matrices with dimensions half lower. Hence, we can sequentially solve the natural frequencies in closed-form owing to the specialty of A. We use this powerful new theory to analyze the free vibration performance and the vibration modes of symmetric composite beams with three different interfaces.展开更多
Classical bending theories for beams and plates can not be used for short, stubby beams and thick plates since transverse shearing effect is excluded, and ordinary theories with multiple generalized displacements can ...Classical bending theories for beams and plates can not be used for short, stubby beams and thick plates since transverse shearing effect is excluded, and ordinary theories with multiple generalized displacements can not be used for long, slender beams and thin plates since the innate relation between rotation angle and deflection is ignored. These two types of theories are not consistent due to the contradiction of dependence and independence of the rotation angle. Based on several basic assumptions, a new type of theories which not only include the transverse shearing effect is presented, but also the relation between potation angle and deflection is obtained. Analytical solutions of several simple beams are given. It has been testified by numerical examples that the new theories can be used for either long, slender beams and thin plates or short, stubby beams and thick plates.展开更多
In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement...In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at micro-scale. Finally, using an energy method and Hamilton's principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave prop- agation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is in- versely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency.展开更多
文摘Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.
基金Project supported by the National Natural Science Foundation of China (No. 12002086)the Fundamental Research Funds for the Central Universities of China (No. 2242022R40040)。
文摘A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain gradient, velocity gradient,and couple stress effects, and accounts for the material variation along the axial direction of the two-component functionally graded beam. The governing equations and complete boundary conditions of the AFG beam are derived based on Hamilton's principle. The correctness of the current model is verified by comparing the static behavior results of the current model and the finite element model(FEM) at the micro-scale. The influence of material inhomogeneity and size effect on the static and dynamic responses of the AFG beam is studied. The numerical results show that the static and vibration responses predicted by the newly developed model are different from those based on the classical model at the micro-scale. The new model can be applied not only in the optimization of micro acoustic wave devices but also in the design of AFG micro-sensors and micro-actuators.
基金supported by the National Natural Science Foundation of China(No.52074042)National Key R&D Program of China(No.2018YFC1504802).
文摘When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.
文摘This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2022YFF0709103,2022YFA1603601,2021YFF0601203,and 2021YFA1600703)the National Natural Science Foundation of China (Grant No.81430087)the Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences,Shanghai Branch (Grant No.JCYJ-SHFY-2021-010)。
文摘Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.
文摘The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.
基金supported by the National Natural Science Foundation of China (No. 51404278)the State Key Program of National Natural Science Foundation of China (No. 51134005)
文摘With the third innovation in science and technology worldwide, China has also experienced thismarvelous progress. Concerning the longwall mining in China, the "masonry beam theory" (MBT) wasfirst proposed in the 1960s, illustrating that the transmission and equilibrium method of overburdenpressure using reserved coal pillar in mined-out areas can be realized. This forms the so-called "121mining method", which lays a solid foundation for development of mining science and technology inChina. The "transfer rock beam theory" (TRBT) proposed in the 1980s gives a further understanding forthe transmission path of stope overburden pressure and pressure distribution in high-stress areas. In thisregard, the advanced 121 mining method was proposed with smaller coal pillar for excavation design,making significant contributions to improvement of the coal recovery rate in that era. In the 21st century,the traditional mining technologies faced great challenges and, under the theoretical developmentspioneered by Profs. Minggao Qian and Zhenqi Song, the "cutting cantilever beam theory" (CCBT) wasproposed in 2008. After that the 110 mining method is formulated subsequently, namely one stope face,after the first mining cycle, needs one advanced gateway excavation, while the other one is automaticallyformed during the last mining cycle without coal pillars left in the mining area. This method can beimplemented using the CCBT by incorporating the key technologies, including the directional presplittingroof cutting, constant resistance and large deformation (CRLD) bolt/anchor supporting systemwith negative Poisson's ratio (NPR) effect material, and remote real-time monitoring technology. TheCCBT and 110 mining method will provide the theoretical and technical basis for the development ofmining industry in China.
文摘Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects.Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases,such as bending analysis of cantilevers,and recourse must be made to the integral version.In this article,a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain-and stress-driven integral nonlocal models.This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation.First,the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy.Also,in each case,the governing equation is obtained in both strong and weak forms.To solve numerically the derived equations,matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule.It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes.Also,it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.
基金supported by the National Natural Science Foundation of China(No.11272278)
文摘Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response.
基金The project supported by the National Natural Science Foundation of China(10172023)
文摘A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.
基金Project supported by Science Foundation of the Chongqing Committee of Education,China (Grant No KJ071205)
文摘A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method.
基金Projects(51605138,U1508210)supported by the National Natural Science Foundation of ChinaProject(BK20160286)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2015B30214)supported by the Fundamental Research Funds for the Central Universities,China
文摘Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model.
基金Supported by the National Key Technology R&D Program of the 11th Five-Year Plan of China(2006BAF04B05)the Natural Science Foundation of Shanxi Province(2010021024-2)
文摘Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, and the results were optimized according to multiple quality objectives by the grey system theory. With bending angle, bending radius and hight difference along the axis direction as variables, orthogonal FE analyses were conducted and the minimum and maximum wall thicknes ses of the billets with different sizes were obtained. Taking the minimum and maximum wall thick nesses as two references, the correlation coefficient between the data for reference and those for comparison by the grey system theory reduced multi objectives to a single quality objective, and the average correlation level of every billet facilitated the optimization of size parameters for hydroform ing car beam. The trial production showed that the optimization approach satisfied the need of hy droforming car beams.
文摘In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end.
文摘In this study,a new state-based peridynamic formulation is developed for functionally graded Euler-Bernoulli beams.The equation of motion is developed by using Lagrange’s equation and Taylor series.Both axial and transverse displacements are taken into account as degrees of freedom.Four different boundary conditions are considered including pinned support-roller support,pinned support-pinned support,clamped-clamped and clamped-free.Peridynamic results are compared against finite element analysis results for transverse and axial deformations and a very good agreement is observed for all different types of boundary conditions.
基金Project supported by the National Basic Research Program of China (No. 2011CB610300)the National Natural Science Foundation of China (Nos. 10972182, 11172239, and 10902089)+3 种基金the 111 Project of China (No. B07050)the Ph. D. Programs Foundation of Ministry of Education of China (No. 20106102110019)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment (No. GZ0802)the Doctorate Foundation of Northwestern Polytechnical University (No. CX201224)
文摘Based on the nonlocal continuum theory, the nonlinear vibration of an embedded single-walled carbon nanotube (SWCNT) subjected to a harmonic load is in- vestigated. In the present study, the SWCNT is assumed to be a curved beam, which is unlike previous similar work. Firstly, the governing equations of motion are derived by the Hamilton principle, meanwhile, the Galerkin approach is carried out to convert the nonlinear integral-differential equation into a second-order nonlinear ordinary differ- ential equation. Then, the precise integration method based on the local linearzation is appropriately designed for solving the above dynamic equations. Besides, the numerical example is presented, the effects of the nonlocal parameters, the elastic medium constants, the waviness ratios, and the material lengths on the dynamic response are analyzed. The results show that the above mentioned effects have influences on the dynamic behavior of the SWCNT.
文摘Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.
文摘A composite beam is symmetric if both the material property and support are symmetric with respect to the middle point. In order to study the free vibration performance of the symmetric composite beams with different complex nonsmooth/discontinuous interfaces, we develop an R(x)-orthonormal theory, where R(x) is an integrable flexural rigidity function. The R(x)-orthonormal bases in the linear space of boundary functions are constructed, of which the second-order derivatives of the boundary functions are asked to be orthonormal with respect to the weight function R(x). When the vibration modes of the symmetric composite beam are expressed in terms of the R(x)-orthonormal bases we can derive an eigenvalue problem endowed with a special structure of the coefficient matrix A :=[aij ],aij= 0 if i + j is odd. Based on the special structure we can prove two new theorems, which indicate that the characteristic equation of A can be decomposed into the product of the characteristic equations of two sub-matrices with dimensions half lower. Hence, we can sequentially solve the natural frequencies in closed-form owing to the specialty of A. We use this powerful new theory to analyze the free vibration performance and the vibration modes of symmetric composite beams with three different interfaces.
文摘Classical bending theories for beams and plates can not be used for short, stubby beams and thick plates since transverse shearing effect is excluded, and ordinary theories with multiple generalized displacements can not be used for long, slender beams and thin plates since the innate relation between rotation angle and deflection is ignored. These two types of theories are not consistent due to the contradiction of dependence and independence of the rotation angle. Based on several basic assumptions, a new type of theories which not only include the transverse shearing effect is presented, but also the relation between potation angle and deflection is obtained. Analytical solutions of several simple beams are given. It has been testified by numerical examples that the new theories can be used for either long, slender beams and thin plates or short, stubby beams and thick plates.
基金Project supported by the Iranian Nanotechnology Development Committee and the University of Kashan(No.463855/11)
文摘In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at micro-scale. Finally, using an energy method and Hamilton's principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave prop- agation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is in- versely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency.