Around 71% of the Earth’s surface is covered by oceans with depths that exceed several kilometers, while continents are geographically enclosed by these vast bodies of water. The principle of fluid mechanics stipulat...Around 71% of the Earth’s surface is covered by oceans with depths that exceed several kilometers, while continents are geographically enclosed by these vast bodies of water. The principle of fluid mechanics stipulates that water yields pressure everywhere in the container that holds it, and the water pressure against the wall of container generates force. Ocean basins are naturally gigantic containers of water, in which continents form the walls of the containers. In this study, we present that the ocean water pressure against the walls of continents generates enormous force, and determine the distribution of this force around continents and estimate its amplitude to be of the order of 1017 N per kilometer of continent width. Our modelling suggests that the stresses yielded by this force are mostly concentrated on the upper part of the continental crust, and their magnitudes reach up to 2.0 - 6.0 MPa. Our results suggest that the force may have significantly impacted the dynamics of continent (lithospheric plate) and its evolution.展开更多
The USMTArray was completed on June 27,2024,comprising a network of 1779 transportable long-period magnetotelluric(MT)stations(Fig.1)with nominal 70-km grid spacing spanning the conterminous United States,an area of 8...The USMTArray was completed on June 27,2024,comprising a network of 1779 transportable long-period magnetotelluric(MT)stations(Fig.1)with nominal 70-km grid spacing spanning the conterminous United States,an area of 8.1×10^(6)km^(2).Each station operated for weeksto-months,as required to meet data quality standards over the period band of 10–10000 s.The USMTArray shares similarities with the planned SinoProbe-II MT Array,with its 1-degree station spacing(~111 km in the latitudinal direction)spanning an area of 9.6×10^(6)km^(2).展开更多
This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)...This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)of snowfall frequency during autumn is mainly characterized by positive anomalies over the Central Siberian Plateau(CSP)and Europe,with opposite anomalies over Central Asia(CA).EOF1 during winter is characterized by positive anomalies in Siberia and negative anomalies in Europe and East Asia(EA).During autumn,EOF1 is associated with the anomalous sea ice in the Kara–Laptev seas(KLS)and sea surface temperature(SST)over the North Atlantic.Increased sea ice in the KLS may cause an increase in the meridional air temperature gradient,resulting in increased synoptic-scale wave activity,thereby inducing increased snowfall frequency over Europe and the CSP.Anomalous increases of both sea ice in the KLS and SST in the North Atlantic may stimulate downstream propagation of Rossby waves and induce an anomalous high in CA corresponding to decreased snowfall frequency.In contrast,EOF1 is mainly affected by the anomalous atmospheric circulation during winter.In the positive phase of the North Atlantic Oscillation(NAO),an anomalous deep cold low(warm high)occurs over Siberia(Europe)leading to increased(decreased)snowfall frequency over Siberia(Europe).The synoptic-scale wave activity excited by the positive NAO can induce downstream Rossby wave propagation and contribute to an anomalous high and descending motion over EA,which may inhibit snowfall.The NAO in winter may be modulated by the Indian Ocean dipole and sea ice in the Barents-Kara-Laptev Seas in autumn.展开更多
The idea of the hypothetical Magellanica Continent(Terra Australis Incognita)was introduced into China by the Jesuit missionaries during the seventeenth century.While not accepted by the Chinese government,it was affi...The idea of the hypothetical Magellanica Continent(Terra Australis Incognita)was introduced into China by the Jesuit missionaries during the seventeenth century.While not accepted by the Chinese government,it was affirmed and transmitted to the public by a few Chinese scholars,including Feng Yingjing,Cheng Bai'er,Zhang Huang,Xiong Mingyu,Xiong Renlin,You Yi,Zhou Yuqi,Jie Xuan,Wang Honghan,and Ye Zipei.Most of them communicated closely with the Jesuit missionaries,and several even helped the missionaries compose the maps.The concept was updated progressively by Matteo Ricci,Giulio Aleni,Johann Adam Schall von Bell,Francesco Sambiasi,and Ferdinand Verbiest.Chinese scholars copied the missionaries'relevant maps and textual introductions without much modification.However,they paid little attention to advancements in the idea,and many of them circulated outdated knowledge.It was not until the middle-and late-nineteenth century that Chinese scholars reexamined the correctness of this hypothetical continent.展开更多
Objective:Bladder neck contracture and vesicourethral anastomotic stenosis are difficult to manage endoscopically,and open repair is associated with high rates of incontinence.In recent years,there have been increasin...Objective:Bladder neck contracture and vesicourethral anastomotic stenosis are difficult to manage endoscopically,and open repair is associated with high rates of incontinence.In recent years,there have been increasing reports of robotic-assisted bladder neck reconstruction in the literature.However,existing studies are small,heterogeneous case series.The objective of this study was to perform a systematic review of robotic-assisted bladder neck reconstruction to better evaluate patency and incontinence outcomes.Methods:We performed a systematic review of PubMed from first available date to May 2023 for all studies evaluating robotic-assisted reconstructive surgery of the bladder neck in adult men.Articles in non-English,author replies,editorials,pediatric-based studies,and reviews were excluded.Outcomes of interest were patency and incontinence rates,which were pooled when appropriate.Results:After identifying 158 articles on initial search,we included only ten studies that fit all aforementioned criteria for robotic-assisted bladder neck reconstruction.All were case series published from March 2018 to March 2022 ranging from six to 32 men,with the median follow-up of 5e23 months.A total of 119 patients were included in our analysis.A variety of etiologies and surgical techniques were described.Patency rates ranged from 50%to 100%,and pooled patency was 80%(95/119).De novo incontinence rates ranged from 0%to 33%,and pooled incontinence was 17%(8/47).Our findings were limited by small sample sizes,relatively short follow-ups,and heterogeneity between studies.展开更多
Renewable energy includes all forms of energy produced from renewable sources in a sustainable manner, including bioenergy, geothermal energy, hydropower, ocean energy, solar energy, and wind energy. Less than one qua...Renewable energy includes all forms of energy produced from renewable sources in a sustainable manner, including bioenergy, geothermal energy, hydropower, ocean energy, solar energy, and wind energy. Less than one quarter of Africa’s renewable power generation potential is utilized. Africa’s natural endowments are enormous, yet the continent experiences high energy shortage. Amongst the classifications of energy sources, renewable and green energy sources are increasingly gaining popularity due to their sustainable nature and environmental concerns. This paper explores the continent’s natural energy sources and identifies pathways to sustainable development. The paper also narrows the renewable and green energy sources obtainable on the continent and presents their contribution to the development of the continent. The awareness level of Africans towards renewable energy is discussed and the challenges of renewable and green energy sources are highlighted. Finally, the roles to be played by the government and private organizations in the development of renewable and green energy sources in Africa are discussed.展开更多
The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase d...The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase diagrams and equilibrium phases involving refractories in industrial process.In this study,the FactSage thermodynamic database relevant to ZrO_(2)-based refractories was reviewed and the application of the database to understanding the corrosion of continuous casting nozzle refractories in steelmaking was presented.展开更多
Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 μW/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and h...Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 μW/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and helium isotope ratio of underground fluid, the heat productions of different tectonic units in China continent are estimated in range of 0.58-1.12 μW/m3 with a median of 0.85 μW/m3. Accordingly, the contents of U, Th and K20 in China crust are in ranges of 0.83-1.76 μg/g, 3.16-6.69 μg/g, and 1.0%-2.12%, respectively. These results indicate that the abundance of radioactive elements in the crust of China continent is much higher than that of Archean crust; and this fact implies China's continental crust is much evolved in chemical composition. Meanwhile, significant lateral variation of crustal composition is also exhibited among different tectonic units in China continent. The crust of eastern China is much enriched in incompatible elements such as U, Th and K than that of western China; and the crust of orogenic belts is more enriched than that of platform regions. It can also be inferred that the crusts of eastern China and orogenic belts are much felsic than those of western China and platform regions, respectively, derived from the positive correlation between the heat production and SiO2 content of bulk crust. This deduction is consistent with the results derived from the crustal seismic velocity data in China. According to the facts of the lower seismic velocity of China than the average value of global crust, and the higher heat production of China continent compared with global crust composition models published by previous studies, it is deduced that the average composition models of global continent crust by Rudnick and Fountain (1995), Rudnick and Gao (2003), Weaver and Tarney (1984), Shaw et al. (1986), and Wedepohl (1995) overestimate the abundance of incompatible elements such as U, Th and K of continental crust.展开更多
The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature(P-T)conditions of(ul...The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature(P-T)conditions of(ultra) high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones(high-pressure metamorphic setting), and vertically by accumulation of mantle-derived magmas at the base of the crust(high-temperature metamorphic setting). Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions(brines). These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust.This accumulation causes tectonic instability, which together with the heat input from the subcontinental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.展开更多
Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been ...Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been made with the finite element software, ANSYS, based on documentary evidence and reasonable assumptions that the subduction of oceanic crust has occurred, the subduction of continental crust can take place and the process can be simplified to a discontinuous plane strain theory model. The modeling results show that it is completely possible for continental crust to be subducted to a depth of 120 km under certain circumstances and conditions. At the same time, the simulations of continental subduction under a single dynamical factor have also been made, including the pull force of the subducted oceanic lithosphere, the drag force connected with mantle convection and the push force of the mid-ocean ridge. These experiments show that the drag force connected with mantle convection is critical for continent subduction.展开更多
Using four satellite data sets(TOMS/SBUV, OMI, MLS, and HALOE), we analyze the seasonal variations of the total column ozone(TCO) and its zonal deviation(TCO*), and reveal the vertical structure of the Ozone Low(OV) o...Using four satellite data sets(TOMS/SBUV, OMI, MLS, and HALOE), we analyze the seasonal variations of the total column ozone(TCO) and its zonal deviation(TCO*), and reveal the vertical structure of the Ozone Low(OV) over the Asian continent. Our principal findings are:(1) The TCO over the Asian continent reaches its maximum in the spring and its minimum in the autumn. The Ozone Low exists from May to September.(2) The Ozone Low has two negative cores, located in the lower and the upper stratosphere. The lower core is near 30 hPa in the winter and 70 hPa in the other seasons. The upper core varies from 10 hPa to 1 hPa among the four seasons.(3)The position of the Ozone Low in the lower and the upper stratosphere over the Asian continent shows seasonal variability.展开更多
The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data an...The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data and a large number of published research results, the basement constitutions and evolutions of tectonic-sedimentary of sedimentary basins, the main border fault belts and the orogenesis of their peripheries of the basins are analyzed. Especially, the main typical basins in the eight divisions in the continent of China are analyzed in detail, including the Tarim, Ordos, Sichuan, Songliao, Bohai Bay, Junggar, Qiadam and Qiangtang basins. The main five stages of superimposed evolutions processes of basins revealed, which accompanied with the tectonic processes of the Paleo-Asian Ocean, Tethyan and Western Pacific domains. They contained the formations of main Cratons (1850-800 Ma), developments of marine basins (800-386 Ma), developments of Marine- continental transition basins and super mantle plumes (386-252 Ma), amalgamation of China Continent and developments of continental basins (252-205 Ma) and development of the foreland basins in the western and extensional faulted basin in the eastern of China (205~0 Ma). Therefore, large scale marine sedimentary basins existed in the relatively stable continental blocks of the Proterozoic, developed during the Neoproterozoic to Paleozoic, with the property of the intracontinental cratons and peripheral foreland basins, the multistage superimposing and late reformations of basins. The continental basins developed on the weak or preexisting divisional basements, or the remnant and reformed marine basins in the Meso-Cenozoic, are mainly the continental margins, back-arc basins, retroarc foreland basins, intracontinental rifts and pull-apart basins. The styles and intensity deformation containing the faults, folds and the structural architecture of regional unconformities of the basins, responded to the openings, subductions, closures of oceans, the continent-continent collisions and reactivation of orogenies near the basins in different periods. The evolutions of the Tianshan-Mongol-Hinggan, Kunlun-Qilian-Qinling-Dabie-Sulu, Jiangshao-Shiwandashan, Helanshan-Longmengshan, Taihang-Wuling orogenic belts, the Tibet Plateau and the Altun and Tan- Lu Fault belts have importantly influenced on the tectonic-sedimentary developments, mineralization and hydrocarbon reservoir conditions of their adjacent basins in different times. The evolutions of basins also rely on the deep structures of lithosphere and the rheological properties of the mantle. The mosaic and mirroring geological structures of the deep lithosphere reflect the pre-existed divisions and hot mantle upwelling, constrain to the origins and transforms dynamics of the basins. The leading edges of the basin tectonic dynamics will focus on the basin and mountain coupling, reconstruction of the paleotectonic-paleogeography, establishing relationship between the structural deformations of shallow surface to the deep lithosphere or asthenosphere, as well as the restoring proto-basin and depicting residual basin of the Paleozoic basin, the effects of multiple stages of volcanism and paleo- earthquake events in China.展开更多
The mantle unsteady flows, which are in an incompressible and isoviscous spherical shell, are investigated by using algorithms of the parallel Lagrange multiplier dissonant decomposition method (LMDDM) and the paralle...The mantle unsteady flows, which are in an incompressible and isoviscous spherical shell, are investigated by using algorithms of the parallel Lagrange multiplier dissonant decomposition method (LMDDM) and the parallel Lagrange multiplier discontinuous deformation analyses (LMDDA) in this paper. Some physical fields about mantle flows such as velocity, pressure, temperature, stress and the force to the crust of the Asian continent are calculated on a parallel computer.展开更多
The India plates continuous motion to the north, the convective removal to the thickening lithosphere caused by small-scale mantle convection and the effect of denudation on the uplifted plateau are regarded as main d...The India plates continuous motion to the north, the convective removal to the thickening lithosphere caused by small-scale mantle convection and the effect of denudation on the uplifted plateau are regarded as main driving forces that make the patterns of stress field of East Asia continent at present time. The method of numerical simulation is used to study the deformation and the stress field of East Asia continent under different boundary conditions, different denudation coefficients and different rock mechanics parameters within a trapezoid geological frame. Comparing with the results obtained by modern space geodetic technique (such as GPS) the results derived from seismological data show that the predicted data by our model can fit them very well. The degree of the fitness in the west is better than that in the east. These results imply that the main driving force of the deformation and the stress patterns of the west part of East Asia continent may come from the collision and compression between the India and the Eurasia plates. The interaction to the Pacific and the Philippines plates in the east part need to be considered. It also shows that the convective removal to the thickening lithosphere caused by small-scale mantle convection and the effect of denudation cannot be negligible in the evolution of the stress patterns.展开更多
Recent studies indicated that except for the land-sea thermal contrast,there also existed the land-land thermal contrast.The composite analysis and t-test method are used to further study the local thermal contrast va...Recent studies indicated that except for the land-sea thermal contrast,there also existed the land-land thermal contrast.The composite analysis and t-test method are used to further study the local thermal contrast variation over the Asian continent,and to discuss the association of seasonal variation of land thermal state with circulation over East Asia,the early summer and summer monsoon activity,and the precipitation anomaly in China in the decadal scale.Results show that the positive meridional temperature anomaly transports downward from upper tropospheric layers in middle-high latitudes north of 25°N in the positive years.In the zonal direction,the Tibetan Plateau heating in the successive spring acts as a force to influence the atmosphere,leading to the rapid temperature warming over eastern Chinese continent,which could increase the land-sea thermal contrast with the negative SSTA.Accordingly,the monsoon activity in early summer over East Asian establishes earlier and the summer monsoon intensity becomes stronger.The early summer precipitation is more-than-normal over the Yangtze River,and the summer precipitation is more-than-normal over the north China and the southwest China.The situation is contrary in the negative years.展开更多
Using the 1979-2009 NCEP/NACR reanalysis data and precipitation records in East China, research is performed of the climatological features of low-frequency oscillation(LFO) in OLR over the Maritime Continent(MC) as w...Using the 1979-2009 NCEP/NACR reanalysis data and precipitation records in East China, research is performed of the climatological features of low-frequency oscillation(LFO) in OLR over the Maritime Continent(MC) as well as their associations with precipitation disturbance in the eastern part of China. Results suggest that in the MC there is significant climatological low-frequency oscillation(CLFO) in outgoing long-wave radiation(OLR), with the intraseasonal oscillation(30-60 days) being the strongest for April-September, and the MC acting as a high-value region of percentage contributions of low-frequency OLR variance. On the low-frequency time scale there occur four events of more intense active OLR during this time interval. In the January-April(May-August) phase, MC convection is relatively weak(vigorous). The CLFO makes pronounced eastward displacement at tropics, with phase propagation seen longitudinally, too. There occur low-frequency disturbance circulations similar to the EAP wavetrain or P-J teleconnection,starting from the MC via the South China Sea and the Philippines to the Yangtze valley of China. At different phases,the variation in the low-frequency circulations and heating fields shows that the rainfall disturbance in eastern China is likely to be under possible effects of the CLFO from the MC in April-September, and the low-frequency heating variation exhibits a meridional pattern as an EAP wavetrain or P-J teleconnection. As the OLR CLFO is in a peak(valley)phase the low-level divergence or convergence with the reversal at high levels over the MC is related to relatively feeble(robust) low frequency convection, thereby exciting an EAP or P-J wavetrain from the MC to the Sea of Japan. At the higher levels, the South-Asian high is eastward(westward) of normal due to effects of low-frequency cyclones(anticyclones), resulting in less(more) rainfall in the Jiangnan(areas in the middle and lower reaches of Yangtze and to the south of the river) and Hetao(the Great Bend of Yellow River) areas, and increased(decreased) rainfall in SW China,Qinghai Plateau and Gansu. At the conversion phases, low-frequency convection becomes more active in parts of the MC, consequently exciting low-frequency wavetrain of cyclones-anticyclones-cyclones at low levels, making the South-Asian high southward of the mean, so that strong convergent zones emerge in the upper and middle Yangtze basins and Jilin of NE China, responsible for plentiful precipitation there in sharp contrast to the rainfall over the band between the Yellow and Huaihe Rivers and the Yunnan-Guizhou Plateau. These results help understand in depth the climatological LFO characteristics and the phase-locked feature, thereby further improving our understanding of the causes of rainfall disturbances in different parts of the country.展开更多
The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere.The Earth-Moon system had many features in common during the birth stage.Solidification ...The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere.The Earth-Moon system had many features in common during the birth stage.Solidification of the dry magma ocean at 4.53 Ga generated primordial continents with komatiite.We speculate that the upper crust was composed of fractionated gabbros and the middle felsic crust by anorthosite at ca.21 km depth boundary,underlain by meta-anorthosite(grossular + kyanite 4 quartz)down to 50-60 km in depth.The thickness of the mafic KREEP basalt in the lower crust,separating it from the underlying upper mantle is not well-constrained and might have been up to ca.100-200 km depending on the degree of fractionation and gravitational stability versus surrounding mantle density.The primordial continents must have been composed of the final residue of dry magma ocean and enriched in several critical elements including Ca,Mg,Fe,Mn,P,K,and Cl which were exposed on the surface of the dry Earth.Around 190 million years after the solidification of the magma ocean, "ABEL bombardment" delivered volatiles including H_2O,CO_2,N_2 as well as silicate components through the addition of icy asteroids.This event continued for 200 Myr with subordinate bombardments until 3.9 Ga,preparing the Earth for the prebiotic chemical evolution and as the cradle of first life.Due to vigorous convection arising from high mantle potential temperatures,the primordial continents disintegrated and were dragged down to the deep mantle,marking the onset of Hadean plate tectonics.展开更多
A zonal teleconnection has been found along the Asian jet over the Eurasian continent during summer. In this study, the authors investigated circulation anomalies in the extratropics, in particular for the zonal telec...A zonal teleconnection has been found along the Asian jet over the Eurasian continent during summer. In this study, the authors investigated circulation anomalies in the extratropics, in particular for the zonal teleconnection, under different combinations of subtropical convection anomalies over the northern Indian continent (IND) and the westem North Pacific (WNP). The outof-phase configuration (i.e., stronger (weaker) IND convection and weaker (stronger) WNP convection) was found to be more common than the in-phase configuration (i.e., stronger (weaker) IND convection and stronger (weaker) WNP convection), which is consistent with previous results. Composite results indicated that circulation anomalies for out-of-phase configurations of 30-60-day convection oscillations are much stronger in the middle latitudes than those for in-phase configurations. In addition, zonal teleconnection patterns are predominant for the out-of-phase configurations, particularly for the configuration of strong IND convection and weak WNP convec- tion; however, they are either weak or obscure for the in-phase configurations. These results suggest that the zonal teleconnection pattem along the Asian jet is dependent on different combinations of the 1ND and WNP subtropical convection anomalies.展开更多
The relationship between the intensity of the South China Sea summer monsoon (SCSSM) and the Nino3.4 index and anomalous atmospheric circulation patterns associated with a strong and weak SCSSM are investigated usin...The relationship between the intensity of the South China Sea summer monsoon (SCSSM) and the Nino3.4 index and anomalous atmospheric circulation patterns associated with a strong and weak SCSSM are investigated using the NCEP/NCAR reanalysis data, Extended Reconstructed Sea Surface Temperature (ERSST) data and Climate Prediction Center Merged Analysis of Precipitation (CMAP) data. The SCSSM is significantly positively correlated with the Nino3.4 index in the succeeding northern autumn and winter. In the strong minus weak SCSSM composite, a positive East Asia-Pacific teleconnection (EAP) pattern and a negative Europe-Asian-Pacific teleconnection (EUP) pattern appear in the 500 hPa height difference field; low-level cross-equatorial flows are strengthened over the Maritime Continent (MC) region; positive (negative) precipitation anomalies occur in the South China Sea and western north Pacific (MC). A possible mechanism through which SCSSM affects ENSO is proposed. A strong (weak) SCSSM strengthens (weakens) cross-equatorial flows over the MC. The anomalous cross-equatorial flows cool (warm) the SST around the MC through enhanced (reduced) surface latent heat fluxes. The cooling (warming) further leads to suppressed (enhanced) convection over the MC, and causes the anomalous westerly (easterly) in the equatorial western Pacific, which favors the onset of E1 Nino (La Nina) through modulating the positive air-sea feedback process.展开更多
文摘Around 71% of the Earth’s surface is covered by oceans with depths that exceed several kilometers, while continents are geographically enclosed by these vast bodies of water. The principle of fluid mechanics stipulates that water yields pressure everywhere in the container that holds it, and the water pressure against the wall of container generates force. Ocean basins are naturally gigantic containers of water, in which continents form the walls of the containers. In this study, we present that the ocean water pressure against the walls of continents generates enormous force, and determine the distribution of this force around continents and estimate its amplitude to be of the order of 1017 N per kilometer of continent width. Our modelling suggests that the stresses yielded by this force are mostly concentrated on the upper part of the continental crust, and their magnitudes reach up to 2.0 - 6.0 MPa. Our results suggest that the force may have significantly impacted the dynamics of continent (lithospheric plate) and its evolution.
文摘The USMTArray was completed on June 27,2024,comprising a network of 1779 transportable long-period magnetotelluric(MT)stations(Fig.1)with nominal 70-km grid spacing spanning the conterminous United States,an area of 8.1×10^(6)km^(2).Each station operated for weeksto-months,as required to meet data quality standards over the period band of 10–10000 s.The USMTArray shares similarities with the planned SinoProbe-II MT Array,with its 1-degree station spacing(~111 km in the latitudinal direction)spanning an area of 9.6×10^(6)km^(2).
基金supported by the National Natural Science Foundation of China(Grant No.41991283).
文摘This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)of snowfall frequency during autumn is mainly characterized by positive anomalies over the Central Siberian Plateau(CSP)and Europe,with opposite anomalies over Central Asia(CA).EOF1 during winter is characterized by positive anomalies in Siberia and negative anomalies in Europe and East Asia(EA).During autumn,EOF1 is associated with the anomalous sea ice in the Kara–Laptev seas(KLS)and sea surface temperature(SST)over the North Atlantic.Increased sea ice in the KLS may cause an increase in the meridional air temperature gradient,resulting in increased synoptic-scale wave activity,thereby inducing increased snowfall frequency over Europe and the CSP.Anomalous increases of both sea ice in the KLS and SST in the North Atlantic may stimulate downstream propagation of Rossby waves and induce an anomalous high in CA corresponding to decreased snowfall frequency.In contrast,EOF1 is mainly affected by the anomalous atmospheric circulation during winter.In the positive phase of the North Atlantic Oscillation(NAO),an anomalous deep cold low(warm high)occurs over Siberia(Europe)leading to increased(decreased)snowfall frequency over Siberia(Europe).The synoptic-scale wave activity excited by the positive NAO can induce downstream Rossby wave propagation and contribute to an anomalous high and descending motion over EA,which may inhibit snowfall.The NAO in winter may be modulated by the Indian Ocean dipole and sea ice in the Barents-Kara-Laptev Seas in autumn.
文摘The idea of the hypothetical Magellanica Continent(Terra Australis Incognita)was introduced into China by the Jesuit missionaries during the seventeenth century.While not accepted by the Chinese government,it was affirmed and transmitted to the public by a few Chinese scholars,including Feng Yingjing,Cheng Bai'er,Zhang Huang,Xiong Mingyu,Xiong Renlin,You Yi,Zhou Yuqi,Jie Xuan,Wang Honghan,and Ye Zipei.Most of them communicated closely with the Jesuit missionaries,and several even helped the missionaries compose the maps.The concept was updated progressively by Matteo Ricci,Giulio Aleni,Johann Adam Schall von Bell,Francesco Sambiasi,and Ferdinand Verbiest.Chinese scholars copied the missionaries'relevant maps and textual introductions without much modification.However,they paid little attention to advancements in the idea,and many of them circulated outdated knowledge.It was not until the middle-and late-nineteenth century that Chinese scholars reexamined the correctness of this hypothetical continent.
基金supported by the National Natural Science Foundation of China[grant number 42275025]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number 2023084].
文摘Objective:Bladder neck contracture and vesicourethral anastomotic stenosis are difficult to manage endoscopically,and open repair is associated with high rates of incontinence.In recent years,there have been increasing reports of robotic-assisted bladder neck reconstruction in the literature.However,existing studies are small,heterogeneous case series.The objective of this study was to perform a systematic review of robotic-assisted bladder neck reconstruction to better evaluate patency and incontinence outcomes.Methods:We performed a systematic review of PubMed from first available date to May 2023 for all studies evaluating robotic-assisted reconstructive surgery of the bladder neck in adult men.Articles in non-English,author replies,editorials,pediatric-based studies,and reviews were excluded.Outcomes of interest were patency and incontinence rates,which were pooled when appropriate.Results:After identifying 158 articles on initial search,we included only ten studies that fit all aforementioned criteria for robotic-assisted bladder neck reconstruction.All were case series published from March 2018 to March 2022 ranging from six to 32 men,with the median follow-up of 5e23 months.A total of 119 patients were included in our analysis.A variety of etiologies and surgical techniques were described.Patency rates ranged from 50%to 100%,and pooled patency was 80%(95/119).De novo incontinence rates ranged from 0%to 33%,and pooled incontinence was 17%(8/47).Our findings were limited by small sample sizes,relatively short follow-ups,and heterogeneity between studies.
文摘Renewable energy includes all forms of energy produced from renewable sources in a sustainable manner, including bioenergy, geothermal energy, hydropower, ocean energy, solar energy, and wind energy. Less than one quarter of Africa’s renewable power generation potential is utilized. Africa’s natural endowments are enormous, yet the continent experiences high energy shortage. Amongst the classifications of energy sources, renewable and green energy sources are increasingly gaining popularity due to their sustainable nature and environmental concerns. This paper explores the continent’s natural energy sources and identifies pathways to sustainable development. The paper also narrows the renewable and green energy sources obtainable on the continent and presents their contribution to the development of the continent. The awareness level of Africans towards renewable energy is discussed and the challenges of renewable and green energy sources are highlighted. Finally, the roles to be played by the government and private organizations in the development of renewable and green energy sources in Africa are discussed.
基金Tata Steel Netherlands,Posco,Hyundai Steel,Nucor Steel,RioTinto,Nippon Steel Corp.,JFE Steel,Voestalpine,RHi-Magnesita,Doosan Enerbility,Seah Besteel,Umicore,Vesuvius and Schott AG are gratefully acknowledged.
文摘The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase diagrams and equilibrium phases involving refractories in industrial process.In this study,the FactSage thermodynamic database relevant to ZrO_(2)-based refractories was reviewed and the application of the database to understanding the corrosion of continuous casting nozzle refractories in steelmaking was presented.
基金supported by the National Natural Science Foundation of China (Grants Nos. 40376013, 40572128, and 40104003)
文摘Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 μW/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and helium isotope ratio of underground fluid, the heat productions of different tectonic units in China continent are estimated in range of 0.58-1.12 μW/m3 with a median of 0.85 μW/m3. Accordingly, the contents of U, Th and K20 in China crust are in ranges of 0.83-1.76 μg/g, 3.16-6.69 μg/g, and 1.0%-2.12%, respectively. These results indicate that the abundance of radioactive elements in the crust of China continent is much higher than that of Archean crust; and this fact implies China's continental crust is much evolved in chemical composition. Meanwhile, significant lateral variation of crustal composition is also exhibited among different tectonic units in China continent. The crust of eastern China is much enriched in incompatible elements such as U, Th and K than that of western China; and the crust of orogenic belts is more enriched than that of platform regions. It can also be inferred that the crusts of eastern China and orogenic belts are much felsic than those of western China and platform regions, respectively, derived from the positive correlation between the heat production and SiO2 content of bulk crust. This deduction is consistent with the results derived from the crustal seismic velocity data in China. According to the facts of the lower seismic velocity of China than the average value of global crust, and the higher heat production of China continent compared with global crust composition models published by previous studies, it is deduced that the average composition models of global continent crust by Rudnick and Fountain (1995), Rudnick and Gao (2003), Weaver and Tarney (1984), Shaw et al. (1986), and Wedepohl (1995) overestimate the abundance of incompatible elements such as U, Th and K of continental crust.
文摘The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature(P-T)conditions of(ultra) high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones(high-pressure metamorphic setting), and vertically by accumulation of mantle-derived magmas at the base of the crust(high-temperature metamorphic setting). Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions(brines). These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust.This accumulation causes tectonic instability, which together with the heat input from the subcontinental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.
文摘Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been made with the finite element software, ANSYS, based on documentary evidence and reasonable assumptions that the subduction of oceanic crust has occurred, the subduction of continental crust can take place and the process can be simplified to a discontinuous plane strain theory model. The modeling results show that it is completely possible for continental crust to be subducted to a depth of 120 km under certain circumstances and conditions. At the same time, the simulations of continental subduction under a single dynamical factor have also been made, including the pull force of the subducted oceanic lithosphere, the drag force connected with mantle convection and the push force of the mid-ocean ridge. These experiments show that the drag force connected with mantle convection is critical for continent subduction.
基金funded by the National Science Foundation of China (91537213, 91837311, 41675039, 41875048)
文摘Using four satellite data sets(TOMS/SBUV, OMI, MLS, and HALOE), we analyze the seasonal variations of the total column ozone(TCO) and its zonal deviation(TCO*), and reveal the vertical structure of the Ozone Low(OV) over the Asian continent. Our principal findings are:(1) The TCO over the Asian continent reaches its maximum in the spring and its minimum in the autumn. The Ozone Low exists from May to September.(2) The Ozone Low has two negative cores, located in the lower and the upper stratosphere. The lower core is near 30 hPa in the winter and 70 hPa in the other seasons. The upper core varies from 10 hPa to 1 hPa among the four seasons.(3)The position of the Ozone Low in the lower and the upper stratosphere over the Asian continent shows seasonal variability.
基金supported by the work project of China Geological Survey(No.12120115002001-4,12120115026901)the Science Research from the Northwest Oilfield Sub–company of SINOPEC(No:KY2013–S–024)+1 种基金a Special Research Grant from Ministry of Land and Resources of the People’s Republic of China(No.201011034)the Innovation Group of National Natural Science Foundation of China(No.40921001)
文摘The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data and a large number of published research results, the basement constitutions and evolutions of tectonic-sedimentary of sedimentary basins, the main border fault belts and the orogenesis of their peripheries of the basins are analyzed. Especially, the main typical basins in the eight divisions in the continent of China are analyzed in detail, including the Tarim, Ordos, Sichuan, Songliao, Bohai Bay, Junggar, Qiadam and Qiangtang basins. The main five stages of superimposed evolutions processes of basins revealed, which accompanied with the tectonic processes of the Paleo-Asian Ocean, Tethyan and Western Pacific domains. They contained the formations of main Cratons (1850-800 Ma), developments of marine basins (800-386 Ma), developments of Marine- continental transition basins and super mantle plumes (386-252 Ma), amalgamation of China Continent and developments of continental basins (252-205 Ma) and development of the foreland basins in the western and extensional faulted basin in the eastern of China (205~0 Ma). Therefore, large scale marine sedimentary basins existed in the relatively stable continental blocks of the Proterozoic, developed during the Neoproterozoic to Paleozoic, with the property of the intracontinental cratons and peripheral foreland basins, the multistage superimposing and late reformations of basins. The continental basins developed on the weak or preexisting divisional basements, or the remnant and reformed marine basins in the Meso-Cenozoic, are mainly the continental margins, back-arc basins, retroarc foreland basins, intracontinental rifts and pull-apart basins. The styles and intensity deformation containing the faults, folds and the structural architecture of regional unconformities of the basins, responded to the openings, subductions, closures of oceans, the continent-continent collisions and reactivation of orogenies near the basins in different periods. The evolutions of the Tianshan-Mongol-Hinggan, Kunlun-Qilian-Qinling-Dabie-Sulu, Jiangshao-Shiwandashan, Helanshan-Longmengshan, Taihang-Wuling orogenic belts, the Tibet Plateau and the Altun and Tan- Lu Fault belts have importantly influenced on the tectonic-sedimentary developments, mineralization and hydrocarbon reservoir conditions of their adjacent basins in different times. The evolutions of basins also rely on the deep structures of lithosphere and the rheological properties of the mantle. The mosaic and mirroring geological structures of the deep lithosphere reflect the pre-existed divisions and hot mantle upwelling, constrain to the origins and transforms dynamics of the basins. The leading edges of the basin tectonic dynamics will focus on the basin and mountain coupling, reconstruction of the paleotectonic-paleogeography, establishing relationship between the structural deformations of shallow surface to the deep lithosphere or asthenosphere, as well as the restoring proto-basin and depicting residual basin of the Paleozoic basin, the effects of multiple stages of volcanism and paleo- earthquake events in China.
基金State Climbing Project (95-S-05-02) and State Natural Science Foundation of China (49724232).
文摘The mantle unsteady flows, which are in an incompressible and isoviscous spherical shell, are investigated by using algorithms of the parallel Lagrange multiplier dissonant decomposition method (LMDDM) and the parallel Lagrange multiplier discontinuous deformation analyses (LMDDA) in this paper. Some physical fields about mantle flows such as velocity, pressure, temperature, stress and the force to the crust of the Asian continent are calculated on a parallel computer.
基金The Development Program on National Key Basic Researches under the Project Mechanism and Prediction of Continental Strong Earthquakes (G19980407).
文摘The India plates continuous motion to the north, the convective removal to the thickening lithosphere caused by small-scale mantle convection and the effect of denudation on the uplifted plateau are regarded as main driving forces that make the patterns of stress field of East Asia continent at present time. The method of numerical simulation is used to study the deformation and the stress field of East Asia continent under different boundary conditions, different denudation coefficients and different rock mechanics parameters within a trapezoid geological frame. Comparing with the results obtained by modern space geodetic technique (such as GPS) the results derived from seismological data show that the predicted data by our model can fit them very well. The degree of the fitness in the west is better than that in the east. These results imply that the main driving force of the deformation and the stress patterns of the west part of East Asia continent may come from the collision and compression between the India and the Eurasia plates. The interaction to the Pacific and the Philippines plates in the east part need to be considered. It also shows that the convective removal to the thickening lithosphere caused by small-scale mantle convection and the effect of denudation cannot be negligible in the evolution of the stress patterns.
基金Natural Science Fund projects of China(40675045,41065004)NSFC-Yunnan Joint Foundation(U0833602)National Public Benefit Research Foundation of China(GYHY201206017)
文摘Recent studies indicated that except for the land-sea thermal contrast,there also existed the land-land thermal contrast.The composite analysis and t-test method are used to further study the local thermal contrast variation over the Asian continent,and to discuss the association of seasonal variation of land thermal state with circulation over East Asia,the early summer and summer monsoon activity,and the precipitation anomaly in China in the decadal scale.Results show that the positive meridional temperature anomaly transports downward from upper tropospheric layers in middle-high latitudes north of 25°N in the positive years.In the zonal direction,the Tibetan Plateau heating in the successive spring acts as a force to influence the atmosphere,leading to the rapid temperature warming over eastern Chinese continent,which could increase the land-sea thermal contrast with the negative SSTA.Accordingly,the monsoon activity in early summer over East Asian establishes earlier and the summer monsoon intensity becomes stronger.The early summer precipitation is more-than-normal over the Yangtze River,and the summer precipitation is more-than-normal over the north China and the southwest China.The situation is contrary in the negative years.
基金Natural Science Foundation of China(41330425,41175062,40475028)Jiangsu PAPD ProjectJiangsu"Qinglan"Project for Activating Research Teams
文摘Using the 1979-2009 NCEP/NACR reanalysis data and precipitation records in East China, research is performed of the climatological features of low-frequency oscillation(LFO) in OLR over the Maritime Continent(MC) as well as their associations with precipitation disturbance in the eastern part of China. Results suggest that in the MC there is significant climatological low-frequency oscillation(CLFO) in outgoing long-wave radiation(OLR), with the intraseasonal oscillation(30-60 days) being the strongest for April-September, and the MC acting as a high-value region of percentage contributions of low-frequency OLR variance. On the low-frequency time scale there occur four events of more intense active OLR during this time interval. In the January-April(May-August) phase, MC convection is relatively weak(vigorous). The CLFO makes pronounced eastward displacement at tropics, with phase propagation seen longitudinally, too. There occur low-frequency disturbance circulations similar to the EAP wavetrain or P-J teleconnection,starting from the MC via the South China Sea and the Philippines to the Yangtze valley of China. At different phases,the variation in the low-frequency circulations and heating fields shows that the rainfall disturbance in eastern China is likely to be under possible effects of the CLFO from the MC in April-September, and the low-frequency heating variation exhibits a meridional pattern as an EAP wavetrain or P-J teleconnection. As the OLR CLFO is in a peak(valley)phase the low-level divergence or convergence with the reversal at high levels over the MC is related to relatively feeble(robust) low frequency convection, thereby exciting an EAP or P-J wavetrain from the MC to the Sea of Japan. At the higher levels, the South-Asian high is eastward(westward) of normal due to effects of low-frequency cyclones(anticyclones), resulting in less(more) rainfall in the Jiangnan(areas in the middle and lower reaches of Yangtze and to the south of the river) and Hetao(the Great Bend of Yellow River) areas, and increased(decreased) rainfall in SW China,Qinghai Plateau and Gansu. At the conversion phases, low-frequency convection becomes more active in parts of the MC, consequently exciting low-frequency wavetrain of cyclones-anticyclones-cyclones at low levels, making the South-Asian high southward of the mean, so that strong convergent zones emerge in the upper and middle Yangtze basins and Jilin of NE China, responsible for plentiful precipitation there in sharp contrast to the rainfall over the band between the Yellow and Huaihe Rivers and the Yunnan-Guizhou Plateau. These results help understand in depth the climatological LFO characteristics and the phase-locked feature, thereby further improving our understanding of the causes of rainfall disturbances in different parts of the country.
基金supported by Foreign Expert Funding from China University of Geosciences Beijing
文摘The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere.The Earth-Moon system had many features in common during the birth stage.Solidification of the dry magma ocean at 4.53 Ga generated primordial continents with komatiite.We speculate that the upper crust was composed of fractionated gabbros and the middle felsic crust by anorthosite at ca.21 km depth boundary,underlain by meta-anorthosite(grossular + kyanite 4 quartz)down to 50-60 km in depth.The thickness of the mafic KREEP basalt in the lower crust,separating it from the underlying upper mantle is not well-constrained and might have been up to ca.100-200 km depending on the degree of fractionation and gravitational stability versus surrounding mantle density.The primordial continents must have been composed of the final residue of dry magma ocean and enriched in several critical elements including Ca,Mg,Fe,Mn,P,K,and Cl which were exposed on the surface of the dry Earth.Around 190 million years after the solidification of the magma ocean, "ABEL bombardment" delivered volatiles including H_2O,CO_2,N_2 as well as silicate components through the addition of icy asteroids.This event continued for 200 Myr with subordinate bombardments until 3.9 Ga,preparing the Earth for the prebiotic chemical evolution and as the cradle of first life.Due to vigorous convection arising from high mantle potential temperatures,the primordial continents disintegrated and were dragged down to the deep mantle,marking the onset of Hadean plate tectonics.
基金supported by the Chinese Academy of Sciences (Grant No. KZCX2-YW-220)the National Basic Research Program of China (Grant No. 2006CB403601)the National Natural Science Foundation of China (Grant No. 40725016)
文摘A zonal teleconnection has been found along the Asian jet over the Eurasian continent during summer. In this study, the authors investigated circulation anomalies in the extratropics, in particular for the zonal teleconnection, under different combinations of subtropical convection anomalies over the northern Indian continent (IND) and the westem North Pacific (WNP). The outof-phase configuration (i.e., stronger (weaker) IND convection and weaker (stronger) WNP convection) was found to be more common than the in-phase configuration (i.e., stronger (weaker) IND convection and stronger (weaker) WNP convection), which is consistent with previous results. Composite results indicated that circulation anomalies for out-of-phase configurations of 30-60-day convection oscillations are much stronger in the middle latitudes than those for in-phase configurations. In addition, zonal teleconnection patterns are predominant for the out-of-phase configurations, particularly for the configuration of strong IND convection and weak WNP convec- tion; however, they are either weak or obscure for the in-phase configurations. These results suggest that the zonal teleconnection pattem along the Asian jet is dependent on different combinations of the 1ND and WNP subtropical convection anomalies.
基金National Science Foundation of China under contract (4067505440505019)China Meteorological Administration (CMATG2006L03)
文摘The relationship between the intensity of the South China Sea summer monsoon (SCSSM) and the Nino3.4 index and anomalous atmospheric circulation patterns associated with a strong and weak SCSSM are investigated using the NCEP/NCAR reanalysis data, Extended Reconstructed Sea Surface Temperature (ERSST) data and Climate Prediction Center Merged Analysis of Precipitation (CMAP) data. The SCSSM is significantly positively correlated with the Nino3.4 index in the succeeding northern autumn and winter. In the strong minus weak SCSSM composite, a positive East Asia-Pacific teleconnection (EAP) pattern and a negative Europe-Asian-Pacific teleconnection (EUP) pattern appear in the 500 hPa height difference field; low-level cross-equatorial flows are strengthened over the Maritime Continent (MC) region; positive (negative) precipitation anomalies occur in the South China Sea and western north Pacific (MC). A possible mechanism through which SCSSM affects ENSO is proposed. A strong (weak) SCSSM strengthens (weakens) cross-equatorial flows over the MC. The anomalous cross-equatorial flows cool (warm) the SST around the MC through enhanced (reduced) surface latent heat fluxes. The cooling (warming) further leads to suppressed (enhanced) convection over the MC, and causes the anomalous westerly (easterly) in the equatorial western Pacific, which favors the onset of E1 Nino (La Nina) through modulating the positive air-sea feedback process.