Objective: To study the characteristics of pulse tracings in CHD, and objectively evaluate the significance of pulse signal in diagnosis and appreciation of therapeutic effect in patients with coronary heart disease(C...Objective: To study the characteristics of pulse tracings in CHD, and objectively evaluate the significance of pulse signal in diagnosis and appreciation of therapeutic effect in patients with coronary heart disease(CHD), and accordingly provide with theoretic proofs for developing non-invasive technique of pulse diagnosis. Methods: By using the pulse detection system, pulse graphs in CHD patients, patients without CHD and "health" adults were collected and compared. Then characters of the pulse signal were analyzed with Hilbert-Huang transformation routine (HHT) and time-domain method respectively. Results: There existed characteristic change in pulse graph in CHD. ① h1,h3,h4,h3/h1,t,t5/t4 in time domain parameters of pulse graph increased and w1 was widened. ② 44% of C2 wave in HHT display showed chaotic and disorderly wave and irregularly wave amplitude in CHD. And 72% of C5 Wave exhibited in irregular wave with average wave amplitude over 10 gram-forces. These changes were significantly different from health adults. Conclusion: Characteristic wave of pulse graph extracted with methods of time domain or HHT routine might be considered as proofs for diagnosis and differentiation in CHD. Our researches prognosticate that pulse diagnosis can be used as an ancillary determination in occurrence of CHD for reasons of the advantage of convenient operation and non-invasion.展开更多
Concentration time-histories of H20 were measured behind reflected shock waves during hydrogen combustion. Experiments were conducted at temperatures of 1117-1282 K, the equivalence ratios of 0.5 and 0.25, and a press...Concentration time-histories of H20 were measured behind reflected shock waves during hydrogen combustion. Experiments were conducted at temperatures of 1117-1282 K, the equivalence ratios of 0.5 and 0.25, and a pressure at 2 atm using a mixture of H2/O2 highly diluted with argon. H2O was monitored using tunable mid-infrared diode laser absorption at 2.55 μm (3920.09 cm-1). These time-histories provide kinetic targets to test and refine reaction mechanisms for hydrogen. Comparisons were made with the predictions of four detailed kinetic mechanisms published in the last four years. Such comparisons of H2O concentration profiles indicate that the AramcoMech 2.0 mechanism yields the best agreement with the experimental data, while CRECK, San Diego, and HP-Mech mechanisms show significantly poor predictions. Reaction pathway analysis for hydrogen oxidation indicates that the reaction H + OH + M = H20 + M is the key reaction for controlling the H2O formation by hydrogen oxidation. It is inferred that the discrepancy of the conversion percentage from H to H20 among these four mechanisms induces the difference of performance on H2O time-history predictions. This work demonstrates the potential of time-history measurement for validation of large reaction mechanisms.展开更多
In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to stud...In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.展开更多
As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time de...As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time demand", which may lead to an imprecise inventory cost. Through the real-time statistic of the inventory quantities, this paper considers the precise (Q, τ) inventory cost model of dual supplier procurement by using an infinitesimal dividing method. The traditional modeling method of the inventory cost for dual supplier procurement includes complex procedures. To reduce the complexity effectively, the presented method investigates the statistics properties in real-time of the inventory quantities with the application of the infinitesimal dividing method. It is proved that the optimal holding and shortage costs of dual supplier procurement are less than those of single supplier procurement respectively. With the assumption that both suppliers have the same distribution of lead times, the convexity of the cost function per unit time is proved. So the optimal solution can be easily obtained by applying the classical convex optimization methods. The numerical examples are given to verify the main conclusions.展开更多
In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space-time fractional modified...In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space-time fractional modified Benjamin-Bona- Mahoney (mBBM) equation, the time fractional mKdV equation and the nonlinear fractional Zoomeron equation which gives rise to some new exact solutions. The physical parameters in the soliton solutions: amplitude, inverse width, free parameters and velocity are obtained as functions of the dependent model coefficients. This method is suitable and more powerful for solving other kinds of nonlinear fractional PDEs arising in mathematical physics. Since the fractional deriva- tives are described in the modified Riemann-Liouville sense.展开更多
In this paper, we use the fractional complex transform and the (G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is prop...In this paper, we use the fractional complex transform and the (G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann-Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations.展开更多
A wide range of techniques has been developed to image biological samples at high spatial and temporal resolution.In this paper,we report recent results from deep-UV confocal fAuorescence microscopy to image inherent ...A wide range of techniques has been developed to image biological samples at high spatial and temporal resolution.In this paper,we report recent results from deep-UV confocal fAuorescence microscopy to image inherent emission from fuorophores such as tryptophan,and structured ilumination microscopy(SIM)of biological materials.One motivation for developing deep-UV fhuorescence imaging and SIM is to provide methods to complement our measurements in the emerging field of X-ray coherent diffractive imaging.展开更多
To handle the electromagnetic problems of the bi-static radar cross section (RCS) calculation of scatterer in a wide fre- quency band, a finite-difference time-domain (FDTD) extrapolation method combining with dis...To handle the electromagnetic problems of the bi-static radar cross section (RCS) calculation of scatterer in a wide fre- quency band, a finite-difference time-domain (FDTD) extrapolation method combining with discrete Fourier transform (DFT) is pro- posed. By comparing the formulas between the steady state field extrapolation method and the transient field extrapolation method, a novel extrapolation method combining with DFT used in FDTD is proposed when a transient field incident wave is introduced. With the proposed method, the full-angle RCS distribution in a wide fre- quency band can be achieved through one-time FDTD calculation. Afterwards, the back-scattering RCS distributions of a double olive body and a sphere-cone body are calculated. Numerical results verify the validity of the proposed method.展开更多
基金The National Basic Research Program (973 Program)grant number: 2003CB517108
文摘Objective: To study the characteristics of pulse tracings in CHD, and objectively evaluate the significance of pulse signal in diagnosis and appreciation of therapeutic effect in patients with coronary heart disease(CHD), and accordingly provide with theoretic proofs for developing non-invasive technique of pulse diagnosis. Methods: By using the pulse detection system, pulse graphs in CHD patients, patients without CHD and "health" adults were collected and compared. Then characters of the pulse signal were analyzed with Hilbert-Huang transformation routine (HHT) and time-domain method respectively. Results: There existed characteristic change in pulse graph in CHD. ① h1,h3,h4,h3/h1,t,t5/t4 in time domain parameters of pulse graph increased and w1 was widened. ② 44% of C2 wave in HHT display showed chaotic and disorderly wave and irregularly wave amplitude in CHD. And 72% of C5 Wave exhibited in irregular wave with average wave amplitude over 10 gram-forces. These changes were significantly different from health adults. Conclusion: Characteristic wave of pulse graph extracted with methods of time domain or HHT routine might be considered as proofs for diagnosis and differentiation in CHD. Our researches prognosticate that pulse diagnosis can be used as an ancillary determination in occurrence of CHD for reasons of the advantage of convenient operation and non-invasion.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0202400 and 2017YFB0202401)
文摘Concentration time-histories of H20 were measured behind reflected shock waves during hydrogen combustion. Experiments were conducted at temperatures of 1117-1282 K, the equivalence ratios of 0.5 and 0.25, and a pressure at 2 atm using a mixture of H2/O2 highly diluted with argon. H2O was monitored using tunable mid-infrared diode laser absorption at 2.55 μm (3920.09 cm-1). These time-histories provide kinetic targets to test and refine reaction mechanisms for hydrogen. Comparisons were made with the predictions of four detailed kinetic mechanisms published in the last four years. Such comparisons of H2O concentration profiles indicate that the AramcoMech 2.0 mechanism yields the best agreement with the experimental data, while CRECK, San Diego, and HP-Mech mechanisms show significantly poor predictions. Reaction pathway analysis for hydrogen oxidation indicates that the reaction H + OH + M = H20 + M is the key reaction for controlling the H2O formation by hydrogen oxidation. It is inferred that the discrepancy of the conversion percentage from H to H20 among these four mechanisms induces the difference of performance on H2O time-history predictions. This work demonstrates the potential of time-history measurement for validation of large reaction mechanisms.
基金supported by the Natural Science Foundation of China Government (10902051)the Natural Science Foundation of Jiangsu Province (BK2008046)the German Science Foundation
文摘In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2007AA04Z102)the National Natural Science Foundation of China(6087407160574077).
文摘As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time demand", which may lead to an imprecise inventory cost. Through the real-time statistic of the inventory quantities, this paper considers the precise (Q, τ) inventory cost model of dual supplier procurement by using an infinitesimal dividing method. The traditional modeling method of the inventory cost for dual supplier procurement includes complex procedures. To reduce the complexity effectively, the presented method investigates the statistics properties in real-time of the inventory quantities with the application of the infinitesimal dividing method. It is proved that the optimal holding and shortage costs of dual supplier procurement are less than those of single supplier procurement respectively. With the assumption that both suppliers have the same distribution of lead times, the convexity of the cost function per unit time is proved. So the optimal solution can be easily obtained by applying the classical convex optimization methods. The numerical examples are given to verify the main conclusions.
文摘In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space-time fractional modified Benjamin-Bona- Mahoney (mBBM) equation, the time fractional mKdV equation and the nonlinear fractional Zoomeron equation which gives rise to some new exact solutions. The physical parameters in the soliton solutions: amplitude, inverse width, free parameters and velocity are obtained as functions of the dependent model coefficients. This method is suitable and more powerful for solving other kinds of nonlinear fractional PDEs arising in mathematical physics. Since the fractional deriva- tives are described in the modified Riemann-Liouville sense.
文摘In this paper, we use the fractional complex transform and the (G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann-Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations.
基金We acknowledge the support of the Australian Research Council for the Center of Excellence for Coherent X-ray Science(CE0561787).
文摘A wide range of techniques has been developed to image biological samples at high spatial and temporal resolution.In this paper,we report recent results from deep-UV confocal fAuorescence microscopy to image inherent emission from fuorophores such as tryptophan,and structured ilumination microscopy(SIM)of biological materials.One motivation for developing deep-UV fhuorescence imaging and SIM is to provide methods to complement our measurements in the emerging field of X-ray coherent diffractive imaging.
基金supported by the National Natural Science Foundation of China(61401361)the Fundamental Research Funds for the Central Universities of China(31020150104)
文摘To handle the electromagnetic problems of the bi-static radar cross section (RCS) calculation of scatterer in a wide fre- quency band, a finite-difference time-domain (FDTD) extrapolation method combining with discrete Fourier transform (DFT) is pro- posed. By comparing the formulas between the steady state field extrapolation method and the transient field extrapolation method, a novel extrapolation method combining with DFT used in FDTD is proposed when a transient field incident wave is introduced. With the proposed method, the full-angle RCS distribution in a wide fre- quency band can be achieved through one-time FDTD calculation. Afterwards, the back-scattering RCS distributions of a double olive body and a sphere-cone body are calculated. Numerical results verify the validity of the proposed method.
文摘基于光电容积脉搏波描记法(Photo Plethysmo Graphy,PPG)的柔性传感器可进行心率(Heart Rate,HR)和血压(Blood Pressure,BP)检测,但是对其检测结果的标定报道甚少.据此,本文提出一种基于模拟血液循环的反射式PPG心率检测和血压标定系统.以蠕动泵来产生脉动流,通过调节其转速的大小来控制模拟血液输送的频率和压力,从而引起弹性乳胶管内模拟血液体积的变化,而改变反射光的信号周期与强度,贴近于人体脉搏测量过程的实际场景.该系统心率检测误差均值为0.27778,95%一致性界限为(-2.59562,3.15117),所测收缩压(Systolic Blood Pressure,SBP)和舒张压(Diastolic Blood Pressure,DBP)的拟合优度分别为0.97185和0.98111.经标定后的柔性PPG传感器对4名志愿者检测的SBP和DBP的平均偏差(Mean Deviation,MD)±标准差(Standard Deviation,SD)均值分别为(1.21±2.16)mmHg和(0.76±2.02)mmHg,均符合且远小于美国医疗仪器促进协会(Association for the Advancement of Medical Instrumentation,AAMI)所制定的衡量血压计精度的标准指标(5±8)mmHg.结果表明,该系统能够准确高效地标定柔性PPG传感器,为实现便携式可穿戴设备的精准血压检测提供标定基础.