In software testing,the quality of test cases is crucial,but manual generation is time-consuming.Various automatic test case generation methods exist,requiring careful selection based on program features.Current evalu...In software testing,the quality of test cases is crucial,but manual generation is time-consuming.Various automatic test case generation methods exist,requiring careful selection based on program features.Current evaluation methods compare a limited set of metrics,which does not support a larger number of metrics or consider the relative importance of each metric to the final assessment.To address this,we propose an evaluation tool,the Test Case Generation Evaluator(TCGE),based on the learning to rank(L2R)algorithm.Unlike previous approaches,our method comprehensively evaluates algorithms by considering multiple metrics,resulting in a more reasoned assessment.The main principle of the TCGE is the formation of feature vectors that are of concern by the tester.Through training,the feature vectors are sorted to generate a list,with the order of the methods on the list determined according to their effectiveness on the tested assembly.We implement TCGE using three L2R algorithms:Listnet,LambdaMART,and RFLambdaMART.Evaluation employs a dataset with features of classical test case generation algorithms and three metrics—Normalized Discounted Cumulative Gain(NDCG),Mean Average Precision(MAP),and Mean Reciprocal Rank(MRR).Results demonstrate the TCGE’s superior effectiveness in evaluating test case generation algorithms compared to other methods.Among the three L2R algorithms,RFLambdaMART proves the most effective,achieving an accuracy above 96.5%,surpassing LambdaMART by 2%and Listnet by 1.5%.Consequently,the TCGE framework exhibits significant application value in the evaluation of test case generation algorithms.展开更多
This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load...This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.展开更多
Bridge engineering is an important part of basic engineering in today’s transportation field,and its quality and performance have a vital impact on the improvement and development of modern transportation engineering...Bridge engineering is an important part of basic engineering in today’s transportation field,and its quality and performance have a vital impact on the improvement and development of modern transportation engineering.With the continuous development of transportation engineering,the maintenance and reinforcement of existing bridges are also being given more emphasis.In order to scientifically evaluate the effectiveness of bridge maintenance and reinforcement,this paper analyzes its detection and evaluation,including the significance,key points,and main methods of detection and evaluation.Therefore,this analysis aim to provide some reference for the maintenance and reinforcement and the quality improvement of bridge engineering.展开更多
Using carbon tetrachloride (CCl4) as extraction agent, the activated sludge from Tianjin Jizhuangzi Sewage Treatment Plant as inoculum, the test study on biodegradability of lubricants was carried out. The test flas...Using carbon tetrachloride (CCl4) as extraction agent, the activated sludge from Tianjin Jizhuangzi Sewage Treatment Plant as inoculum, the test study on biodegradability of lubricants was carried out. The test flasks containing the mineral medium, the test oil and the inoculum were placed in incubation together with flasks containing poisoned blanks for periods of 0 and 21 days, respectively. Flasks containing the reference materials in place of the test oil were run in parallel. At the end of the incubation period, the contents of the flasks were subjected to sonic vibration, and were acidified and extracted by using CCI4. The extracts were then analysed by infra-red (IR) spectrometer to measure the maximum absorption of the C-H stretch of CH2-CH3 band at wavelength of 2 930 cm^-1. The absorption values were used to calculate the residual oil contents of the poisoned and test flasks. Consequently the biodegradability of the test oil was calculated. The test results indicate that the differences in the biodegradability of test materials in different tests are within 5.5%, and consistent with the data described in Coordinating European Council (CEC) L-33- A-93. The biodegradability of lubricants can be evaluated by this method effectively.展开更多
In this paper, the CMA-TRAMS tropical high-resolution system was used to forecast a typical hot weather process in Guangdong, China with different horizontal resolutions and surface coverage. The results of resolution...In this paper, the CMA-TRAMS tropical high-resolution system was used to forecast a typical hot weather process in Guangdong, China with different horizontal resolutions and surface coverage. The results of resolutions of 0.02° and 0.06° were presented with the same surface coverage of the GlobeLand30 V2020, companies with the results of resolution 0.02° with the USGS global surface coverage. The results showed that, on the overall assessment the 2 km model performed better in forecasting 2 m temperature, while the 6 km model was more accurate in predicting 10 m wind speed. In the evaluation of representative stations, the 2 km model performed better in forecasting 2 m temperature and 2 m relative humidity at the coastal stations, and the 2 km model was also better in forecasting 2 m pressure at the representative stations. However, the 6 km model performed better in forecasting 10 m wind speed at the representative stations. Furthermore, the 2 km model, owing to its higher horizontal resolution, presented a more detailed stratification of various meteorological field maps, allowing for a more pronounced simulation of local meteorological element variations. And the use of the surface coverage data of the GlobeLand30 V2020 improved the forecasting of 2 m temperature, and 10 m wind speed compared to the USGS surface coverage data.展开更多
The paper is an evaluative research on the possible washback effects of College English Test. By comparing and analyzing the differences between the old and new tests, it points out three major changes and their possi...The paper is an evaluative research on the possible washback effects of College English Test. By comparing and analyzing the differences between the old and new tests, it points out three major changes and their possible washback effects on the process of English language teaching and learning: abandon the part of Grammar & Vocabulary, increase the proportion of listening test and change the test reporting form.展开更多
A smart fully mechanized coal mining working face is comprised of various heterogeneous equipment that work together in unknown coal seam environments.The goal is to form a smart operational system with comprehensive ...A smart fully mechanized coal mining working face is comprised of various heterogeneous equipment that work together in unknown coal seam environments.The goal is to form a smart operational system with comprehensive perception,decisionmaking,and control.This involves many work points and complex coupling relationships,indicating it needs to be performed in stages and coordinated to address key problems in all directions and along multiple points.However,there are no existing unifed test or analysis tools.Therefore,this study proposed a virtual test and evaluation method for a fully mechanized mining production system with diferent smart levels.This is based on the concept of“real data processing–virtual scene construction–setting key information points–virtual operation and evaluation.”The actual operational data for a specifc working face geology and equipment were reasonably transformed into a visual virtual scene through a movement relationship model.The virtual operations and mining conditions of the working face were accurately reproduced.Based on the sensor and execution error analyses for diferent smart levels,the input interface for sensing,decision-making,and control was established for each piece of equipment,and an operation evaluation system was constructed.The system comprehensively simulates and tests the key points of sensing decision-making and control with various smart levels.The experimental results showed that the virtual scene constructed based on actual operational data has a high simulation degree.Users can simulate,analyze,and evaluate the overall operations of the smart mining 2.0–4.0 working face by inputting key information.The future direction for the smart development of fully mechanized mining is highlighted.展开更多
Nowadays,clear evaluation models and methods are lacking in classified protection of information system,which our country is making efforts to promote.The quantitative evaluation of classified protection of informatio...Nowadays,clear evaluation models and methods are lacking in classified protection of information system,which our country is making efforts to promote.The quantitative evaluation of classified protection of information system security is studied.An indicators system of testing and evaluation is established.Furthermore,a model of unit testing and evaluation and a model of entirety testing and evaluation are presented respectively.With analytic hierarchy process and two-grade fuzzy comprehensive evaluation,the subjective and uncertain data of evaluation will be quantitatively analyzed by comprehensive evaluation.Particularly,the variable weight method is used to model entirety testing and evaluation.It can solve the problem that the weights need to be adjusted because of the relationship role which enhances or reduces security of information system.Finally,the paper demonstrates that the model testing and evaluation can be validly used to evaluate the information system by an example.The model proposed in this paper provides a new valuable way for classified protection of information system security.展开更多
A differential accelerometer comprising of two rotating masses made of the same material is proposed for drop tower-based free-fall testing of the spin-spin force between the rotating mass and the Earth. The measureme...A differential accelerometer comprising of two rotating masses made of the same material is proposed for drop tower-based free-fall testing of the spin-spin force between the rotating mass and the Earth. The measurement is performed by placing the two concentric masses of very different momenta in a vacuum drop capsule which is falling freely in the Earth's gravitational field. A nonzero output of the differential aeeelerometer is an indication of possible violation of new equivalence principle (NEP). We present the conceptual design of a modified free-fall NEP experiment which can be performed at the Belting drop tower. Design and evaluation of the differential accelerometer with a hybrid electrostatic/magnetic suspension system are presented to accommodate for operation on ground and drop-tower tests. Details specific to the measurement uncertainty are discussed to yield an NEP test accuracy of 7.2×10^-9.展开更多
As flow environment is poor in low permeability reservoirs, wells are always fractured in order to gain better economic benefits. Well testing analysis is very necessary for fracturing wells. However, available test a...As flow environment is poor in low permeability reservoirs, wells are always fractured in order to gain better economic benefits. Well testing analysis is very necessary for fracturing wells. However, available test analysis methods are of slow fitting speed and low fitting precision. In this paper, we first use a comprehensive evaluation method of analytical well testing, numerical well testing and well testing design. Many dynamic parameters such as fracture length, fracture conductivity, skin factor, etc are obtained. An example to illustrate accurate results of this method is given.展开更多
This paper analyzes the design and implementation of a normal writing test in a senior high school. In line with theories of test evaluation, an effective writing test should try to meet the balance of the six usefuln...This paper analyzes the design and implementation of a normal writing test in a senior high school. In line with theories of test evaluation, an effective writing test should try to meet the balance of the six usefulness, which will be discussed in this paper; thereafter, pedagogical implications will be mentioned with an emphasis on how a test affects the teachers in changing their teaching approaches and motivates the learners in achieving higher goals in their writing proficiency.展开更多
The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to it...The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to its superior spatial resolution and capabilities of detecting and characterizing defects and structural damage in non-conducting materials.In this study,the THz-TDS system is used to detect,localize and evaluate hidden multi-delamination defects(i.e.,a three-level multi-delamination system)in multilayered GFRP composite laminates.To obtain accurate results,a wavelet shrinkage de-noising algorithm is used to remove the noise from the measured time-of-flight(TOF)signals.The thickness and location of each delamination defect in the z-direction(i.e.,through-the-thickness direction)are calculated from the de-noised TOF signals considering the interaction between the pulsed THz waves and the different interfaces in the GFRP composite laminates.A comparison between the actual and the measured thickness values of the delamination defects before and after the wavelet shrinkage denoising process indicates that the latter provides better results with less than 3.712%relative error,while the relative error of the non-de-noised signals reaches 16.388%.Also,the power and absorbance levels of the THz waves at every interface with different refractive indices in the GFRP composite laminates are evaluated based on analytical and experimental approaches.The present study provides an adequate theoretical analysis that could help NDT&E specialists to estimate the maximum thickness of GFRP composite materials and/or structures with different interfaces that can be evaluated by the THz-TDS.Also,the accuracy of the obtained results highlights the capabilities of the THz-TDS for the NDT&E of multilayered GFRP composite laminates.展开更多
Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent ye...Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent years,non-metallic pipes,such as plastic pipes,ceramic pipes,and concrete pipes,are increasingly taking the place of pipes made from metal in various pipeline networks such as water supply,drainage,heat,industry,oil,and gas.The location technologies for the location of the buried metal pipeline have become mature,but detection and location technologies for the non-metallic pipelines are still developing.In this paper,current trends and future perspectives of detection and location of buried non-metallic pipelines are summarized.Initially,this paper reviews and analyzes electromagnetic induction technologies,electromagnetic wave technologies,and other physics-based technologies.It then focuses on acoustic detection and location technologies,and finally introduces emerging technologies.Then the technical characteristics of each detection and location method have been compared,with their strengths and weaknesses identified.The current trends and future perspectives of each buried non-metallic pipeline detection and location technology have also been defined.Finally,some suggestions for the future development of buried non-metallic pipeline detection and location technologies are provided.展开更多
Eddy current pulsed thermography(ECPT) is an emerging Non-destructive testing and evaluation(NDT E) technique, which uses hybrid eddy current and thermography NDT E techniques that enhances the detectability fro...Eddy current pulsed thermography(ECPT) is an emerging Non-destructive testing and evaluation(NDT E) technique, which uses hybrid eddy current and thermography NDT E techniques that enhances the detectability from their compensation. Currently, this technique is limited by the manual selection of proper contrast frames and the issue of improving the efficiency of defect detection of complex structure samples remains a challenge. In order to select a specific frame from transient thermal image sequences to maximize the contrast of thermal variation and defect pattern from complex structure samples, an energy driven approach to compute the coefficient energy of wavelet transform is proposed which has the potential of automatically selecting both optimal transient frame and spatial scale for defect detection using ECPT. According to analysis of the variation of different frequency component and the comparison study of the detection performance of different scale and wavelets, the frame at the end of heating phase is automatically selected as an optimal transient frame for defect detection. In addition, the detection capabilities of the complex structure samples can be enhanced through proper spatial scale and wavelet selection. The proposed method has successfully been applied to low speed impact damage detection of carbon fibre reinforced polymer(CFRP) composite as well as providing the guidance to improve the detectability of ECPT technique.展开更多
Autonomous vehicles are essential for mobility in big cities,just like how elevators make high-rise buildings livable.While significant progress has been achieved over the last 15 years,there are still several remaini...Autonomous vehicles are essential for mobility in big cities,just like how elevators make high-rise buildings livable.While significant progress has been achieved over the last 15 years,there are still several remaining challenges,namely:cost,robust performance,and trust.To address these challenges,this paper discusses research at Mcity.展开更多
This paper introduces recent research work in the field of pulsed electromagnetic non-destructive testing/evaluation.These are pulsed eddy current,pulsed magnetic flux leakage and eddy current pulsed thermography.This...This paper introduces recent research work in the field of pulsed electromagnetic non-destructive testing/evaluation.These are pulsed eddy current,pulsed magnetic flux leakage and eddy current pulsed thermography.This paper introduces pulsed electromagnetic techniques and their different case studies on defect detection as well as stress characterisation.Experimental tests have been validated and future research plans are discussed.This paper demonstrates pulsed electromagnetic non-destructive testing and evaluation for not only depth information,but also for multiple parameter measurement and multiple integration,which are important for future development.展开更多
The region of investigation is part of the western desert of Iraq covering an area of about 12,400 km2, this region includes several large wadis discharging to the Euphrates River. Since the Tectonic features in parti...The region of investigation is part of the western desert of Iraq covering an area of about 12,400 km2, this region includes several large wadis discharging to the Euphrates River. Since the Tectonic features in particular fault zones play a significant role with respect to groundwater flow in hard rock terrains. The present research is focus on investigate lineaments that have been classified as suspected faults by means of remote sensing techniques and digital terrain evaluation in combination with interpolating groundwater heads and MLU pumping tests model in a fractured rock aquifer, Lineaments extraction approach is illustrated a fare matching with suspected faults, moreover these lineaments conducted an elevated permeability zone.展开更多
According to the trajectory characteristics of ballistic missile, a reduced parameter model is constructed based on difference between telemetry trajectory and trajectory tracking data. By virtue of Bayesian theory an...According to the trajectory characteristics of ballistic missile, a reduced parameter model is constructed based on difference between telemetry trajectory and trajectory tracking data. By virtue of Bayesian theory and data fusion technique, a new test evaluation method is put forth, which can make full use of the trajectory tracking data, shooting range test data and relevant information. Since the impact point can be derived from trajectory difference and its kinetic characteristics, evaluation of the impact point is a special case of this method. The accurate evaluation and the accuracy of evaluation results can be provided by the new method.展开更多
Autonomous vehicles must pass effective standard tests to verify their reliability and safety.Accord-ingly,it is very important to establish a complete scientific test and evaluation system for autonomous vehicles.A c...Autonomous vehicles must pass effective standard tests to verify their reliability and safety.Accord-ingly,it is very important to establish a complete scientific test and evaluation system for autonomous vehicles.A comprehensive framework incorporating the design of test scenarios,selection of evaluation indexes,and estab-lishment of an evaluation system is proposed in this paper.The aims of the system are to obtain an objective and quantitative score regarding the intelligence of autonomous vehicles,and to form an automated process in the future development.The proposed framework is built on a simulation platform to ensure the feasibility of the design and implementation of the test scenarios.The design principle for the test scenarios is also presented.To reduce subjective influences,the proposed framework selects objective indexes from four aspects:safety,comfort,driving performance,and standard regulations.The order relation analysis method is adopted to formulate the index weights,and fuzzy comprehensive evaluation is used to quantify the scores.Finally,a numerical example is provided to visually demonstrate the evaluation results for the autonomous vehicles scored by the proposed framework.展开更多
文摘In software testing,the quality of test cases is crucial,but manual generation is time-consuming.Various automatic test case generation methods exist,requiring careful selection based on program features.Current evaluation methods compare a limited set of metrics,which does not support a larger number of metrics or consider the relative importance of each metric to the final assessment.To address this,we propose an evaluation tool,the Test Case Generation Evaluator(TCGE),based on the learning to rank(L2R)algorithm.Unlike previous approaches,our method comprehensively evaluates algorithms by considering multiple metrics,resulting in a more reasoned assessment.The main principle of the TCGE is the formation of feature vectors that are of concern by the tester.Through training,the feature vectors are sorted to generate a list,with the order of the methods on the list determined according to their effectiveness on the tested assembly.We implement TCGE using three L2R algorithms:Listnet,LambdaMART,and RFLambdaMART.Evaluation employs a dataset with features of classical test case generation algorithms and three metrics—Normalized Discounted Cumulative Gain(NDCG),Mean Average Precision(MAP),and Mean Reciprocal Rank(MRR).Results demonstrate the TCGE’s superior effectiveness in evaluating test case generation algorithms compared to other methods.Among the three L2R algorithms,RFLambdaMART proves the most effective,achieving an accuracy above 96.5%,surpassing LambdaMART by 2%and Listnet by 1.5%.Consequently,the TCGE framework exhibits significant application value in the evaluation of test case generation algorithms.
文摘This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.
文摘Bridge engineering is an important part of basic engineering in today’s transportation field,and its quality and performance have a vital impact on the improvement and development of modern transportation engineering.With the continuous development of transportation engineering,the maintenance and reinforcement of existing bridges are also being given more emphasis.In order to scientifically evaluate the effectiveness of bridge maintenance and reinforcement,this paper analyzes its detection and evaluation,including the significance,key points,and main methods of detection and evaluation.Therefore,this analysis aim to provide some reference for the maintenance and reinforcement and the quality improvement of bridge engineering.
基金China Petroleum & Chemical Corporation (No. 104141)
文摘Using carbon tetrachloride (CCl4) as extraction agent, the activated sludge from Tianjin Jizhuangzi Sewage Treatment Plant as inoculum, the test study on biodegradability of lubricants was carried out. The test flasks containing the mineral medium, the test oil and the inoculum were placed in incubation together with flasks containing poisoned blanks for periods of 0 and 21 days, respectively. Flasks containing the reference materials in place of the test oil were run in parallel. At the end of the incubation period, the contents of the flasks were subjected to sonic vibration, and were acidified and extracted by using CCI4. The extracts were then analysed by infra-red (IR) spectrometer to measure the maximum absorption of the C-H stretch of CH2-CH3 band at wavelength of 2 930 cm^-1. The absorption values were used to calculate the residual oil contents of the poisoned and test flasks. Consequently the biodegradability of the test oil was calculated. The test results indicate that the differences in the biodegradability of test materials in different tests are within 5.5%, and consistent with the data described in Coordinating European Council (CEC) L-33- A-93. The biodegradability of lubricants can be evaluated by this method effectively.
文摘In this paper, the CMA-TRAMS tropical high-resolution system was used to forecast a typical hot weather process in Guangdong, China with different horizontal resolutions and surface coverage. The results of resolutions of 0.02° and 0.06° were presented with the same surface coverage of the GlobeLand30 V2020, companies with the results of resolution 0.02° with the USGS global surface coverage. The results showed that, on the overall assessment the 2 km model performed better in forecasting 2 m temperature, while the 6 km model was more accurate in predicting 10 m wind speed. In the evaluation of representative stations, the 2 km model performed better in forecasting 2 m temperature and 2 m relative humidity at the coastal stations, and the 2 km model was also better in forecasting 2 m pressure at the representative stations. However, the 6 km model performed better in forecasting 10 m wind speed at the representative stations. Furthermore, the 2 km model, owing to its higher horizontal resolution, presented a more detailed stratification of various meteorological field maps, allowing for a more pronounced simulation of local meteorological element variations. And the use of the surface coverage data of the GlobeLand30 V2020 improved the forecasting of 2 m temperature, and 10 m wind speed compared to the USGS surface coverage data.
文摘The paper is an evaluative research on the possible washback effects of College English Test. By comparing and analyzing the differences between the old and new tests, it points out three major changes and their possible washback effects on the process of English language teaching and learning: abandon the part of Grammar & Vocabulary, increase the proportion of listening test and change the test reporting form.
基金Funding National Natural Science Foundation of China,52004174Major Science and Technology Projects in Shanxi Province,202101020101021+2 种基金Fund for Shanxi“1331”ProjectKey Project of the Chinese Society of Academic Degrees and Graduate Education,2020ZDA12Natural Science Foundation of Shanxi Province,201901D211022.
文摘A smart fully mechanized coal mining working face is comprised of various heterogeneous equipment that work together in unknown coal seam environments.The goal is to form a smart operational system with comprehensive perception,decisionmaking,and control.This involves many work points and complex coupling relationships,indicating it needs to be performed in stages and coordinated to address key problems in all directions and along multiple points.However,there are no existing unifed test or analysis tools.Therefore,this study proposed a virtual test and evaluation method for a fully mechanized mining production system with diferent smart levels.This is based on the concept of“real data processing–virtual scene construction–setting key information points–virtual operation and evaluation.”The actual operational data for a specifc working face geology and equipment were reasonably transformed into a visual virtual scene through a movement relationship model.The virtual operations and mining conditions of the working face were accurately reproduced.Based on the sensor and execution error analyses for diferent smart levels,the input interface for sensing,decision-making,and control was established for each piece of equipment,and an operation evaluation system was constructed.The system comprehensively simulates and tests the key points of sensing decision-making and control with various smart levels.The experimental results showed that the virtual scene constructed based on actual operational data has a high simulation degree.Users can simulate,analyze,and evaluate the overall operations of the smart mining 2.0–4.0 working face by inputting key information.The future direction for the smart development of fully mechanized mining is highlighted.
基金supported in part by National Natural Science Foundation of China under Grant No. 60970115 and 91018008Science and Technology Foundation of Guizhou Province,China under Grant No. 20112213+1 种基金2010 Doctoral Scientific Research Foundation of Guizhou Normal University,ChinaNatural Science Research Project of Education Department of Guizhou Province,China under Grant No. 20090034
文摘Nowadays,clear evaluation models and methods are lacking in classified protection of information system,which our country is making efforts to promote.The quantitative evaluation of classified protection of information system security is studied.An indicators system of testing and evaluation is established.Furthermore,a model of unit testing and evaluation and a model of entirety testing and evaluation are presented respectively.With analytic hierarchy process and two-grade fuzzy comprehensive evaluation,the subjective and uncertain data of evaluation will be quantitatively analyzed by comprehensive evaluation.Particularly,the variable weight method is used to model entirety testing and evaluation.It can solve the problem that the weights need to be adjusted because of the relationship role which enhances or reduces security of information system.Finally,the paper demonstrates that the model testing and evaluation can be validly used to evaluate the information system by an example.The model proposed in this paper provides a new valuable way for classified protection of information system security.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91436107 and 61374207
文摘A differential accelerometer comprising of two rotating masses made of the same material is proposed for drop tower-based free-fall testing of the spin-spin force between the rotating mass and the Earth. The measurement is performed by placing the two concentric masses of very different momenta in a vacuum drop capsule which is falling freely in the Earth's gravitational field. A nonzero output of the differential aeeelerometer is an indication of possible violation of new equivalence principle (NEP). We present the conceptual design of a modified free-fall NEP experiment which can be performed at the Belting drop tower. Design and evaluation of the differential accelerometer with a hybrid electrostatic/magnetic suspension system are presented to accommodate for operation on ground and drop-tower tests. Details specific to the measurement uncertainty are discussed to yield an NEP test accuracy of 7.2×10^-9.
文摘As flow environment is poor in low permeability reservoirs, wells are always fractured in order to gain better economic benefits. Well testing analysis is very necessary for fracturing wells. However, available test analysis methods are of slow fitting speed and low fitting precision. In this paper, we first use a comprehensive evaluation method of analytical well testing, numerical well testing and well testing design. Many dynamic parameters such as fracture length, fracture conductivity, skin factor, etc are obtained. An example to illustrate accurate results of this method is given.
文摘This paper analyzes the design and implementation of a normal writing test in a senior high school. In line with theories of test evaluation, an effective writing test should try to meet the balance of the six usefulness, which will be discussed in this paper; thereafter, pedagogical implications will be mentioned with an emphasis on how a test affects the teachers in changing their teaching approaches and motivates the learners in achieving higher goals in their writing proficiency.
基金National Natural Science Foundation of China(Grant Nos.52275096,52005108,52275523)Fuzhou-Xiamen-Quanzhou National Independent Innovation Demonstration Zone High-end Equipment Vibration and Noise Detection and Fault Diagnosis Collaborative Innovation Platform ProjectFujian Provincial Major Research Project(Grant No.2022HZ024005)。
文摘The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to its superior spatial resolution and capabilities of detecting and characterizing defects and structural damage in non-conducting materials.In this study,the THz-TDS system is used to detect,localize and evaluate hidden multi-delamination defects(i.e.,a three-level multi-delamination system)in multilayered GFRP composite laminates.To obtain accurate results,a wavelet shrinkage de-noising algorithm is used to remove the noise from the measured time-of-flight(TOF)signals.The thickness and location of each delamination defect in the z-direction(i.e.,through-the-thickness direction)are calculated from the de-noised TOF signals considering the interaction between the pulsed THz waves and the different interfaces in the GFRP composite laminates.A comparison between the actual and the measured thickness values of the delamination defects before and after the wavelet shrinkage denoising process indicates that the latter provides better results with less than 3.712%relative error,while the relative error of the non-de-noised signals reaches 16.388%.Also,the power and absorbance levels of the THz waves at every interface with different refractive indices in the GFRP composite laminates are evaluated based on analytical and experimental approaches.The present study provides an adequate theoretical analysis that could help NDT&E specialists to estimate the maximum thickness of GFRP composite materials and/or structures with different interfaces that can be evaluated by the THz-TDS.Also,the accuracy of the obtained results highlights the capabilities of the THz-TDS for the NDT&E of multilayered GFRP composite laminates.
基金Supported by Downhole Intelligent Measurement and Control Science and Technology Innovation Team of Southwest Petroleum University(Grant No.2018CXTD04)National Natural Science Foundation of China(Grant Nos.61701085,51974273)+1 种基金Chengdu Municipal international science and technology cooperation project of China(Grant Nos.2020-GH02-00016-HZ)2020 National Mountain Highway Engineering Technology Research Center Open Fund Project(Grant No.GSGZJ-2020-01).
文摘Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent years,non-metallic pipes,such as plastic pipes,ceramic pipes,and concrete pipes,are increasingly taking the place of pipes made from metal in various pipeline networks such as water supply,drainage,heat,industry,oil,and gas.The location technologies for the location of the buried metal pipeline have become mature,but detection and location technologies for the non-metallic pipelines are still developing.In this paper,current trends and future perspectives of detection and location of buried non-metallic pipelines are summarized.Initially,this paper reviews and analyzes electromagnetic induction technologies,electromagnetic wave technologies,and other physics-based technologies.It then focuses on acoustic detection and location technologies,and finally introduces emerging technologies.Then the technical characteristics of each detection and location method have been compared,with their strengths and weaknesses identified.The current trends and future perspectives of each buried non-metallic pipeline detection and location technology have also been defined.Finally,some suggestions for the future development of buried non-metallic pipeline detection and location technologies are provided.
基金Supported by National Natural Science Foundation of China(Grant No.51377015)China Post Doctor Project(Grant No.136413)Science&Technology Department of Sichuan Province,China(Grant No.2013HH0059)
文摘Eddy current pulsed thermography(ECPT) is an emerging Non-destructive testing and evaluation(NDT E) technique, which uses hybrid eddy current and thermography NDT E techniques that enhances the detectability from their compensation. Currently, this technique is limited by the manual selection of proper contrast frames and the issue of improving the efficiency of defect detection of complex structure samples remains a challenge. In order to select a specific frame from transient thermal image sequences to maximize the contrast of thermal variation and defect pattern from complex structure samples, an energy driven approach to compute the coefficient energy of wavelet transform is proposed which has the potential of automatically selecting both optimal transient frame and spatial scale for defect detection using ECPT. According to analysis of the variation of different frequency component and the comparison study of the detection performance of different scale and wavelets, the frame at the end of heating phase is automatically selected as an optimal transient frame for defect detection. In addition, the detection capabilities of the complex structure samples can be enhanced through proper spatial scale and wavelet selection. The proposed method has successfully been applied to low speed impact damage detection of carbon fibre reinforced polymer(CFRP) composite as well as providing the guidance to improve the detectability of ECPT technique.
文摘Autonomous vehicles are essential for mobility in big cities,just like how elevators make high-rise buildings livable.While significant progress has been achieved over the last 15 years,there are still several remaining challenges,namely:cost,robust performance,and trust.To address these challenges,this paper discusses research at Mcity.
基金Sichuan province Science and Technology department( No. 2011GZ0002 and No. 2013HH0059)the university basic scientific research project( No. ZYGX2013J090 ) for funding the work
文摘This paper introduces recent research work in the field of pulsed electromagnetic non-destructive testing/evaluation.These are pulsed eddy current,pulsed magnetic flux leakage and eddy current pulsed thermography.This paper introduces pulsed electromagnetic techniques and their different case studies on defect detection as well as stress characterisation.Experimental tests have been validated and future research plans are discussed.This paper demonstrates pulsed electromagnetic non-destructive testing and evaluation for not only depth information,but also for multiple parameter measurement and multiple integration,which are important for future development.
文摘The region of investigation is part of the western desert of Iraq covering an area of about 12,400 km2, this region includes several large wadis discharging to the Euphrates River. Since the Tectonic features in particular fault zones play a significant role with respect to groundwater flow in hard rock terrains. The present research is focus on investigate lineaments that have been classified as suspected faults by means of remote sensing techniques and digital terrain evaluation in combination with interpolating groundwater heads and MLU pumping tests model in a fractured rock aquifer, Lineaments extraction approach is illustrated a fare matching with suspected faults, moreover these lineaments conducted an elevated permeability zone.
基金the National Natural Science Foundation of China(Grant No. 69872039).
文摘According to the trajectory characteristics of ballistic missile, a reduced parameter model is constructed based on difference between telemetry trajectory and trajectory tracking data. By virtue of Bayesian theory and data fusion technique, a new test evaluation method is put forth, which can make full use of the trajectory tracking data, shooting range test data and relevant information. Since the impact point can be derived from trajectory difference and its kinetic characteristics, evaluation of the impact point is a special case of this method. The accurate evaluation and the accuracy of evaluation results can be provided by the new method.
基金the National Natural Science Foundation of China(No.61873167)the Automotive In-dustry Science and Technology Development Foundation of Shanghai(No.1904)。
文摘Autonomous vehicles must pass effective standard tests to verify their reliability and safety.Accord-ingly,it is very important to establish a complete scientific test and evaluation system for autonomous vehicles.A comprehensive framework incorporating the design of test scenarios,selection of evaluation indexes,and estab-lishment of an evaluation system is proposed in this paper.The aims of the system are to obtain an objective and quantitative score regarding the intelligence of autonomous vehicles,and to form an automated process in the future development.The proposed framework is built on a simulation platform to ensure the feasibility of the design and implementation of the test scenarios.The design principle for the test scenarios is also presented.To reduce subjective influences,the proposed framework selects objective indexes from four aspects:safety,comfort,driving performance,and standard regulations.The order relation analysis method is adopted to formulate the index weights,and fuzzy comprehensive evaluation is used to quantify the scores.Finally,a numerical example is provided to visually demonstrate the evaluation results for the autonomous vehicles scored by the proposed framework.