In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loo...In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.展开更多
Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principle...Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.展开更多
This paper aims to improve the performance of a class of distributed parameter systems for the optimal switching of actuators and controllers based on event-driven control. It is assumed that in the available multiple...This paper aims to improve the performance of a class of distributed parameter systems for the optimal switching of actuators and controllers based on event-driven control. It is assumed that in the available multiple actuators, only one actuator can receive the control signal and be activated over an unfixed time interval, and the other actuators keep dormant. After incorporating a state observer into the event generator, the event-driven control loop and the minimum inter-event time are ultimately bounded. Based on the event-driven state feedback control, the time intervals of unfixed length can be obtained. The optimal switching policy is based on finite horizon linear quadratic optimal control at the beginning of each time subinterval. A simulation example demonstrate the effectiveness of the proposed policy.展开更多
With the advances of electronic information technology and computer network, especially the embedded technology, smart home is no more just a vision but being practical. The interoperability of heterogeneous devices a...With the advances of electronic information technology and computer network, especially the embedded technology, smart home is no more just a vision but being practical. The interoperability of heterogeneous devices and flexibility of devices' usage are two key problems that challenge the implementation of smart home. To deal with these two issues, this paper proposes an event-driven service oriented architecture using device profile for web services (DPWS). DPWS inherits the advantages of the traditional web services in achieving interoperability without dependence on platform, while improving service discovery and security as well as being optimized for deploying on resource constrained devices. By providing a visual interface for describing a service workflow (SW), the user can easily customize the actions of devices by services composition. Devices automatically cooperate without user's intervention to complete required business logic. This is achieved by fully exploiting the eventing capabilities on DPWS enabled home devices. Finally, a home theater scenario is given to illustrate the event driven mechanism for the SW in the proposed smart home framework.展开更多
In this paper, the testing technology of event-driven software is focused. It is first analyzed the difference between event-driven software and the traditional procedure-oriented software, and based on the above anal...In this paper, the testing technology of event-driven software is focused. It is first analyzed the difference between event-driven software and the traditional procedure-oriented software, and based on the above analysis, the mechanism of event-driven and the effect of introduction of event-driven mechanism on software testing are unveiled. Then based on the characteristic of the event-driven software, the traditional software testing method is improved, and testing policy of event based test is presented in this paper.Moreover the event coverage criteria are defined and given here. At the same time the event executing rule are further uncovered, such as ordinal event, non-ordinal event, predecessor event and concurrent event etc., and also the methods of testing according to event executing rule are studied.展开更多
The evoked spike discharges of a neuron depend critically on the recent history of its electrical activity. A well-known example is the phenomenon of spike-frequency adaptation that is a commonly observed property of ...The evoked spike discharges of a neuron depend critically on the recent history of its electrical activity. A well-known example is the phenomenon of spike-frequency adaptation that is a commonly observed property of neurons. In this paper, using a leaky integrate-and-fire model that includes an adaptation current, we propose an event-driven strategy to simulate integrate-and-fire models with spike-frequency adaptation. Such approach is more precise than traditional clock-driven numerical integration approach because the timing of spikes is treated exactly. In experiments, using event-driven and clock-driven strategies we simulated the adaptation time course of single neuron and the random network with spike-timing dependent plasticity, the results indicate that (1) the temporal precision of spiking events impacts on neuronal dynamics of single as well as network in the different simulation strategies and (2) the simulation time in the event-driven simulation strategies. scales linearly with the total number of spiking events展开更多
Based on the biological immune concept, immune response mechanism and expert system, a dynamic and intelligent scheduling model toward the disturbance of the production such as machine fault,task insert and cancel etc...Based on the biological immune concept, immune response mechanism and expert system, a dynamic and intelligent scheduling model toward the disturbance of the production such as machine fault,task insert and cancel etc. Is proposed. The antibody generation method based on the sequence constraints and the coding rule of antibody for the machining procedure is also presented. Using the heuristic antibody generation method based on the physiology immune mechanism, the validity of the scheduling optimization is improved, and based on the immune and expert system under the event-driven constraints, not only Job-shop scheduling problem with multi-objective can be solved, but also the disturbance of the production be handled rapidly. A case of the job-shop scheduling is studied and dynamic optimal solutions with multi-objective function for agile manufacturing are obtained in this paper. And the event-driven dynamic rescheduling result is compared with right-shift rescheduling and total rescheduling.展开更多
Hefei Light Source(HLS)-II is a vacuum ultraviole(VUV) synchrotron light source. A major upgrade of the light source was finished at the end of 2014. The timing system was rebuilt using compact peripheral component in...Hefei Light Source(HLS)-II is a vacuum ultraviole(VUV) synchrotron light source. A major upgrade of the light source was finished at the end of 2014. The timing system was rebuilt using compact peripheral component interconnect(cPCI) event-driven hardware to meet synchronization requirements of the machine. In the new system, the c PCI event-driven products manufactured by the micro-research finland(MRF) Oy are employed to achieve about 100 output signals with different interfaces. Device supports and drivers developed for common Experimental Physics and Industrial Control System(EPICS) records are used to access the registers on the timing modules. Five c PCI-bus input/output controllers(IOCs) distributed in different areas of the light source host timing modules for various subsystems. The delay resolution of this system is 9.8 ns for most channels and 9 ps for the channels used for triggering the electron gun and the injection kickers. The measured rms jitter of the output signal is less than 27 ps. Using the bucket chooser, this system enables the HLS-II to fill the storage ring with any designated bunch pattern. Benefitting from this upgrade, brightness and performance of the light source are significantly improved.展开更多
The existing multipath routing protocols for wireless sensor networks demonstrate the efficacy of traffic distribution over multiple paths to fulfill the Quality of Service (QoS) requirements of different applicatio...The existing multipath routing protocols for wireless sensor networks demonstrate the efficacy of traffic distribution over multiple paths to fulfill the Quality of Service (QoS) requirements of different applications. However, the performance of these protocols is highly affected by the characteristics of the wireless channel and may be even inferior to the performance of single-path approaches. Specifically, when multiple adjacent paths are being used concurrently, the broadcast nature of wireless channels results in inter-path interference which significantly degrades end-to-end throughput. In this paper, we propose a Low- Interference Energy-efficient Multipath Routing protocol (LIEMRO) to improve the QoS requirements of event-driven applications. In addition, in order to optimize resource utilization over the established paths, LIEMRO employs a quality-based load balancing algorithm to regulate the amount of traffic injected into the paths. The performance gain of LIEMRO compared to the ETX-based single-path routing protocol is 85%, 80%, and 25% in terms of data delivery ratio, end-to-end throughput, and network lifetime, respectively. Furthermore, the end-to-end latency is improved more than 60%.展开更多
The event-driven paradigm offers an alternative to the time-driven paradigm for modelling,sampling,estimation,control and optimization.This has come about largely as a consequence of systems being increasingly network...The event-driven paradigm offers an alternative to the time-driven paradigm for modelling,sampling,estimation,control and optimization.This has come about largely as a consequence of systems being increasingly networked,wireless and consisting of distributed communicating components.The key idea is that control actions need not be dictated by time steps taken by a“clock”;rather,an action should be triggered by an“event”which may be a well-defined condition on the system state,including the possibility of a simple time step,or a random state transition.We provide an overview of recent developments in event-driven approaches and focus on two areas to illustrate their value.First,in distributed systems,we describe how event-driven,rather than synchronous,communication can guarantee convergence in cooperative distributed optimization while provably maintaining optimality.Second,in hybrid systems where events naturally decompose state trajectories into different discrete states(modes),we review the theory of infinitesimal perturbation analysis(IPA)which offers an event-driven“IPA calculus”for evaluating(or estimating in the case of stochastic systems)gradients of performance metrics,thus facilitating the solution of a large class of control and optimization problems.展开更多
Although the proportional current sharing has been widely studied,the heterogeneous characteristic of the different interfaced converters and power coupling terms among distributed generators(DGs)are rarely considered...Although the proportional current sharing has been widely studied,the heterogeneous characteristic of the different interfaced converters and power coupling terms among distributed generators(DGs)are rarely considered.Therefore,this paper proposes a secondary H_(∞)consensus method with a periodic dynamic event-driven scheme for dc microgrids with power coupling to accomplish the precise proportional current-sharing.It is useful for reducing carbon.First,a generalized converter is constructed through equivalent transformation between rectifier and boost converter.Moreover,the heterogeneous characteristic of the interfaced converters regarding different DGs,such as wind and solar generators,is embedded into controller design.Furthermore,the standard linear heterogeneous multi-agent system with power coupling term is built.On this basis,the problem of proportional current sharing is modified into the output consistency problem of multi-agent systems.Furthermore,the H_(∞)consensus approach is proposed to accomplish the precise proportional current sharing.Meanwhile,to shorten communication bandwidth,the periodic dynamic event-driven communication strategy is designed.Compared with traditional event-driven communication schemes,a lower communication frequency has been obtained through the proposed communication scheme.In addition,this communication scheme not only avoids Zeno-behavior,but also acquires the smallest sampling time interval.Finally,effectiveness of the proposed approach is verified by two test systems.展开更多
In event-driven algorithms for simulation of diffusing,colliding,and reacting particles,new positions and events are sampled from the cumulative distribution function(CDF)of a probability distribution.The distribution...In event-driven algorithms for simulation of diffusing,colliding,and reacting particles,new positions and events are sampled from the cumulative distribution function(CDF)of a probability distribution.The distribution is sampled frequently and it is important for the efficiency of the algorithm that the sampling is fast.The CDF is known analytically or computed numerically.Analytical formulas are sometimes rather complicated making them difficult to evaluate.The CDF may be stored in a table for interpolation or computed directly when it is needed.Different alternatives are compared for chemically reacting molecules moving by Brownian diffusion in two and three dimensions.The best strategy depends on the dimension of the problem,the length of the time interval,the density of the particles,and the number of different reactions.展开更多
The classical discrete element approach(DEM)based on Newtonian dynamics can be divided into two major groups,event-driven methods(EDM)and timedriven methods(TDM).Generally speaking,TDM simulations are suited for cases...The classical discrete element approach(DEM)based on Newtonian dynamics can be divided into two major groups,event-driven methods(EDM)and timedriven methods(TDM).Generally speaking,TDM simulations are suited for cases with high volume fractions where there are collisions between multiple objects.EDM simulations are suited for cases with low volume fractions from the viewpoint of CPU time.A method combining EDM and TDM called Hybrid Algorithm of event-driven and time-driven methods(HAET)is presented in this paper.The HAET method employs TDM for the areas with high volume fractions and EDM for the remaining areas with low volume fractions.It can decrease the CPU time for simulating granular flows with strongly non-uniform volume fractions.In addition,a modified EDM algorithm using a constant time as the lower time step limit is presented.Finally,an example is presented to demonstrate the hybrid algorithm.展开更多
With the rapid development of 3D Digital City, the focus of research has shifted from 3D city modeling and geo-database construction to 3D geo-database service and maintenance. The frequent modifications on geometry, ...With the rapid development of 3D Digital City, the focus of research has shifted from 3D city modeling and geo-database construction to 3D geo-database service and maintenance. The frequent modifications on geometry, texture, attribute, and topology present a great challenge to the 3D geo-database updating.This article proposes an event-driven spatiotemporal database model (ESDM) that combines the historical and present 3D city models with the semantic classification and state expression, triggered by changing events predefined. In addition, a corresponding dynamic updating method based on adaptive matching algorithm is presented to perform the dynamic updating operation for the complex 3D city models automatically, according to the compound matching of semantics, attributes, and spatial locations. finally, the validity and feasibility of the proposed ESDM and its updating method are demonstrated through a 3D geo-database with more than 1.5 million 3D city models.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62274189the Natural Science Foundation of Guangdong Province,China,under Grant 2022A1515011054the Key Area R&D Program of Guangdong Province under Grant 2022B0701180001.
文摘In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.
文摘Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.
基金supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61104155)the Fundamental Research Funds for theCentral Universities,China(Grant Nos.JUDCF13037 and JUSRP51322B)+1 种基金the Programme of Introducing Talents of Discipline to Universities,China(GrantNo.B12018)the Jiangsu Innovation Program for Graduates,China(Grant No.CXZZ13-0740)
文摘This paper aims to improve the performance of a class of distributed parameter systems for the optimal switching of actuators and controllers based on event-driven control. It is assumed that in the available multiple actuators, only one actuator can receive the control signal and be activated over an unfixed time interval, and the other actuators keep dormant. After incorporating a state observer into the event generator, the event-driven control loop and the minimum inter-event time are ultimately bounded. Based on the event-driven state feedback control, the time intervals of unfixed length can be obtained. The optimal switching policy is based on finite horizon linear quadratic optimal control at the beginning of each time subinterval. A simulation example demonstrate the effectiveness of the proposed policy.
文摘With the advances of electronic information technology and computer network, especially the embedded technology, smart home is no more just a vision but being practical. The interoperability of heterogeneous devices and flexibility of devices' usage are two key problems that challenge the implementation of smart home. To deal with these two issues, this paper proposes an event-driven service oriented architecture using device profile for web services (DPWS). DPWS inherits the advantages of the traditional web services in achieving interoperability without dependence on platform, while improving service discovery and security as well as being optimized for deploying on resource constrained devices. By providing a visual interface for describing a service workflow (SW), the user can easily customize the actions of devices by services composition. Devices automatically cooperate without user's intervention to complete required business logic. This is achieved by fully exploiting the eventing capabilities on DPWS enabled home devices. Finally, a home theater scenario is given to illustrate the event driven mechanism for the SW in the proposed smart home framework.
文摘In this paper, the testing technology of event-driven software is focused. It is first analyzed the difference between event-driven software and the traditional procedure-oriented software, and based on the above analysis, the mechanism of event-driven and the effect of introduction of event-driven mechanism on software testing are unveiled. Then based on the characteristic of the event-driven software, the traditional software testing method is improved, and testing policy of event based test is presented in this paper.Moreover the event coverage criteria are defined and given here. At the same time the event executing rule are further uncovered, such as ordinal event, non-ordinal event, predecessor event and concurrent event etc., and also the methods of testing according to event executing rule are studied.
文摘The evoked spike discharges of a neuron depend critically on the recent history of its electrical activity. A well-known example is the phenomenon of spike-frequency adaptation that is a commonly observed property of neurons. In this paper, using a leaky integrate-and-fire model that includes an adaptation current, we propose an event-driven strategy to simulate integrate-and-fire models with spike-frequency adaptation. Such approach is more precise than traditional clock-driven numerical integration approach because the timing of spikes is treated exactly. In experiments, using event-driven and clock-driven strategies we simulated the adaptation time course of single neuron and the random network with spike-timing dependent plasticity, the results indicate that (1) the temporal precision of spiking events impacts on neuronal dynamics of single as well as network in the different simulation strategies and (2) the simulation time in the event-driven simulation strategies. scales linearly with the total number of spiking events
基金This work was supported by National Science Foundation of Shanghai(02ZF14003)
文摘Based on the biological immune concept, immune response mechanism and expert system, a dynamic and intelligent scheduling model toward the disturbance of the production such as machine fault,task insert and cancel etc. Is proposed. The antibody generation method based on the sequence constraints and the coding rule of antibody for the machining procedure is also presented. Using the heuristic antibody generation method based on the physiology immune mechanism, the validity of the scheduling optimization is improved, and based on the immune and expert system under the event-driven constraints, not only Job-shop scheduling problem with multi-objective can be solved, but also the disturbance of the production be handled rapidly. A case of the job-shop scheduling is studied and dynamic optimal solutions with multi-objective function for agile manufacturing are obtained in this paper. And the event-driven dynamic rescheduling result is compared with right-shift rescheduling and total rescheduling.
基金Supported by the National Natural Science Foundation of China(Nos.11375177 and 11375186)
文摘Hefei Light Source(HLS)-II is a vacuum ultraviole(VUV) synchrotron light source. A major upgrade of the light source was finished at the end of 2014. The timing system was rebuilt using compact peripheral component interconnect(cPCI) event-driven hardware to meet synchronization requirements of the machine. In the new system, the c PCI event-driven products manufactured by the micro-research finland(MRF) Oy are employed to achieve about 100 output signals with different interfaces. Device supports and drivers developed for common Experimental Physics and Industrial Control System(EPICS) records are used to access the registers on the timing modules. Five c PCI-bus input/output controllers(IOCs) distributed in different areas of the light source host timing modules for various subsystems. The delay resolution of this system is 9.8 ns for most channels and 9 ps for the channels used for triggering the electron gun and the injection kickers. The measured rms jitter of the output signal is less than 27 ps. Using the bucket chooser, this system enables the HLS-II to fill the storage ring with any designated bunch pattern. Benefitting from this upgrade, brightness and performance of the light source are significantly improved.
基金supported by the International Doctoral Fellowship (IDF) provided by the Universiti Teknologi Malaysia (UTM)
文摘The existing multipath routing protocols for wireless sensor networks demonstrate the efficacy of traffic distribution over multiple paths to fulfill the Quality of Service (QoS) requirements of different applications. However, the performance of these protocols is highly affected by the characteristics of the wireless channel and may be even inferior to the performance of single-path approaches. Specifically, when multiple adjacent paths are being used concurrently, the broadcast nature of wireless channels results in inter-path interference which significantly degrades end-to-end throughput. In this paper, we propose a Low- Interference Energy-efficient Multipath Routing protocol (LIEMRO) to improve the QoS requirements of event-driven applications. In addition, in order to optimize resource utilization over the established paths, LIEMRO employs a quality-based load balancing algorithm to regulate the amount of traffic injected into the paths. The performance gain of LIEMRO compared to the ETX-based single-path routing protocol is 85%, 80%, and 25% in terms of data delivery ratio, end-to-end throughput, and network lifetime, respectively. Furthermore, the end-to-end latency is improved more than 60%.
基金This work was supported in part by National Science Foundation[grant number CNS-1139021]Air Force Office of Scientific Research[grant number FA9550-12-1-0113]+1 种基金Office of Naval Research[grant number N00014-09-1-1051]Army Research Office[grant number W911NF-11-1-0227].
文摘The event-driven paradigm offers an alternative to the time-driven paradigm for modelling,sampling,estimation,control and optimization.This has come about largely as a consequence of systems being increasingly networked,wireless and consisting of distributed communicating components.The key idea is that control actions need not be dictated by time steps taken by a“clock”;rather,an action should be triggered by an“event”which may be a well-defined condition on the system state,including the possibility of a simple time step,or a random state transition.We provide an overview of recent developments in event-driven approaches and focus on two areas to illustrate their value.First,in distributed systems,we describe how event-driven,rather than synchronous,communication can guarantee convergence in cooperative distributed optimization while provably maintaining optimality.Second,in hybrid systems where events naturally decompose state trajectories into different discrete states(modes),we review the theory of infinitesimal perturbation analysis(IPA)which offers an event-driven“IPA calculus”for evaluating(or estimating in the case of stochastic systems)gradients of performance metrics,thus facilitating the solution of a large class of control and optimization problems.
基金supported by National Key Research and Development Program of China(2018YFA0702200)National Natural Science Foundation of China(62073065).
文摘Although the proportional current sharing has been widely studied,the heterogeneous characteristic of the different interfaced converters and power coupling terms among distributed generators(DGs)are rarely considered.Therefore,this paper proposes a secondary H_(∞)consensus method with a periodic dynamic event-driven scheme for dc microgrids with power coupling to accomplish the precise proportional current-sharing.It is useful for reducing carbon.First,a generalized converter is constructed through equivalent transformation between rectifier and boost converter.Moreover,the heterogeneous characteristic of the interfaced converters regarding different DGs,such as wind and solar generators,is embedded into controller design.Furthermore,the standard linear heterogeneous multi-agent system with power coupling term is built.On this basis,the problem of proportional current sharing is modified into the output consistency problem of multi-agent systems.Furthermore,the H_(∞)consensus approach is proposed to accomplish the precise proportional current sharing.Meanwhile,to shorten communication bandwidth,the periodic dynamic event-driven communication strategy is designed.Compared with traditional event-driven communication schemes,a lower communication frequency has been obtained through the proposed communication scheme.In addition,this communication scheme not only avoids Zeno-behavior,but also acquires the smallest sampling time interval.Finally,effectiveness of the proposed approach is verified by two test systems.
基金Financial support has been obtained from the Swedish Research Council.
文摘In event-driven algorithms for simulation of diffusing,colliding,and reacting particles,new positions and events are sampled from the cumulative distribution function(CDF)of a probability distribution.The distribution is sampled frequently and it is important for the efficiency of the algorithm that the sampling is fast.The CDF is known analytically or computed numerically.Analytical formulas are sometimes rather complicated making them difficult to evaluate.The CDF may be stored in a table for interpolation or computed directly when it is needed.Different alternatives are compared for chemically reacting molecules moving by Brownian diffusion in two and three dimensions.The best strategy depends on the dimension of the problem,the length of the time interval,the density of the particles,and the number of different reactions.
基金supported by a grant from Department of Energy and Process Engineering,Norwegian University of Science and Technology,Institute for Energy Technology(IFE)and SINTEF through the FACE(Multiphase Flow Assurance Innovation Center)project.
文摘The classical discrete element approach(DEM)based on Newtonian dynamics can be divided into two major groups,event-driven methods(EDM)and timedriven methods(TDM).Generally speaking,TDM simulations are suited for cases with high volume fractions where there are collisions between multiple objects.EDM simulations are suited for cases with low volume fractions from the viewpoint of CPU time.A method combining EDM and TDM called Hybrid Algorithm of event-driven and time-driven methods(HAET)is presented in this paper.The HAET method employs TDM for the areas with high volume fractions and EDM for the remaining areas with low volume fractions.It can decrease the CPU time for simulating granular flows with strongly non-uniform volume fractions.In addition,a modified EDM algorithm using a constant time as the lower time step limit is presented.Finally,an example is presented to demonstrate the hybrid algorithm.
基金This study is supported by the National Natural Science Foundation of China [grant number 41301439], the Open Research Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing [grant number 11I01], [grant number 15I03], and the Guangdong Province Science and Technology Plan Project (grant number 2015A010103010)
文摘With the rapid development of 3D Digital City, the focus of research has shifted from 3D city modeling and geo-database construction to 3D geo-database service and maintenance. The frequent modifications on geometry, texture, attribute, and topology present a great challenge to the 3D geo-database updating.This article proposes an event-driven spatiotemporal database model (ESDM) that combines the historical and present 3D city models with the semantic classification and state expression, triggered by changing events predefined. In addition, a corresponding dynamic updating method based on adaptive matching algorithm is presented to perform the dynamic updating operation for the complex 3D city models automatically, according to the compound matching of semantics, attributes, and spatial locations. finally, the validity and feasibility of the proposed ESDM and its updating method are demonstrated through a 3D geo-database with more than 1.5 million 3D city models.