Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate cl...Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.展开更多
Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining a...Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining activities and changing environment.The aims of the study are to investigate climate changeinduced changes of subtropical evergreen broad-leaved forests in Yunnan and identify areas of current species richness centers for conservation preparation.Stacked species distribution models were created to generate ensemble forecasting of species distributions,alpha diversity and beta diversity for Yunnan's subtropical evergreen broad-leaved forests in both current and future climate scenarios.Under stacked species distribution models in rapid climate changes scenarios,changes of water-energy dynamics may possibly reduce beta diversity and increase alpha diversity.This point provides insight for future conservation of evergreen broad-leaved forest in Yunnan,highlighting the need to fully consider the problem of vegetation homogenization caused by transformation of water-energy dynamics.展开更多
Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urge...Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urgent to conserve and restore these natural forests in China. In this paper,the tendency and rate of species diversity restoration of the evergreen broad-leaved forest in Daming Mountain has been studied.The main resultsare as follows:(a)In subtropical mid-mountain area,species diversity in degraded evergreen broad-leaved forestcan be restored. Through analyzing b diversity index of communities in different time and space,it was found that the species composition of communities tend to be the same as that in the zonal evergreen broad-leaved forest.(b)The restoration rate of evergreen broad-leaved forest was very fast.Planting Chinese fir after clear-cutting and controlled burning of the forest,178 species appeared in a 600m^2 sample area after 20 years’natural recovering.Among the sespecies,58 were tree layer and the height of community reached 18m.The survey suggested that it would take only 20 years for the degraded forest to develop into community composed of lightdemanding broad-leaved pioneer trees and min-tolerance broad-leaved trees,and it need another 40~80 years to reach the stage consisting of min-tolerance evergreen broad-leaved trees.(c)Species number increased quickly at the early stage(2-20years)during vegetation recovering process toward the climax,and decreased at the min-stage (50-60 years),then maintained a relatively stable level at the late-stage (over 150 years).展开更多
The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous,island-like,distribution.It is diverse,rich in endemic species,and likely to be sensitive...The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous,island-like,distribution.It is diverse,rich in endemic species,and likely to be sensitive to climate change.Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan.All trees with d.b.h.>1 cm in each plot were identified.Patterns of seed plant distributions were quantified at the specific,generic and family levels.The forests are dominated by the families Fagaceae,Lauraceae,Theaceae and Magnoliaceae,but are very diverse with only a few species shared between sites.Floristic similarities at the family and generic level were high,but they were low at the specific level,with species complementarity between plots.Diversity varied greatly among sites,with greater species richness and more rare species in western Yunnan than central Yunnan.The flora is dominated by tropical biogeographical elements,mainly the pantropic and the tropical Asian distributions at the family and genus levels.In contrast,at the species level,the flora is dominated by the southwest or the southeast China distributions,including Yunnan endemics.This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin,and has adapted to cooler temperatures with the uplift of the Himalayas.Due to great sensitivity to climate,high endemism and species complementarity,as well as the discontinuous,island-like,distribution patterns of the upper montane forest in Yunnan,the regional conservation of the forest is especially needed.展开更多
Background: Within the highly bio-diverse ‘Northern Vietnam Lowland Rain Forests Ecoregion' only small, and mostly highly modified forestlands persist within vast exotic-species plantations. The aim of this study w...Background: Within the highly bio-diverse ‘Northern Vietnam Lowland Rain Forests Ecoregion' only small, and mostly highly modified forestlands persist within vast exotic-species plantations. The aim of this study was to elucidate vegetation patterns of a secondary hillside rainforest remnant(elevation 120–330 m, 76 ha) as an outcome of natural processes, and anthropogenic processes linked to changing forest values.Methods: In the rainforest remnant tree species and various bio-physical parameters(relating to soils and terrain)were surveyed on forty 20 m × 20 m sized plots. The forest's vegetation patterns and tree diversity were analysed using dendrograms, canonical correspondence analysis, and other statistical tools.Results: Forest tree species richness was high(172 in the survey, 94 per hectare), including many endemic species(〉16%; some recently described). Vegetation patterns and diversity were largely explained by topography, with colline/sub-montane species present mainly along hillside ridges, and lowland/humid-tropical species predominant on lower slopes. Scarcity of high-value timber species reflected past logging, whereas abundance of light-demanding species, and species valued for fruits, provided evidence of human-aided forest restoration and ‘enrichment' in terms of useful trees. Exhaustion of sought-after forest products, and decreasing appreciation of non-wood products concurred with further encroachment of exotic plantations in between 2010 and 2015. Regeneration of rare tree species was reduced probably due to forest isolation.Conclusions: Despite long-term anthropogenic influences, remnant forests in the lowlands of Vietnam can harbor high plant biodiversity, including many endangered species. Various successive future changes(vanishing species, generalist dominance, and associated forest structural-qualitative changes) are, however, expected to occur in smal forest fragments.Lowland forest biodiversity can only be maintained if forest fragments maintain a certain size and/or are connected via corridors to larger forest networks. Preservation of the forests may be fostered using new economic incentive schemes.展开更多
Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relative...Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 5400 stems-ha^-1 ( -〉 3.0 cm DBH); 64% of those stems were smaller than 10 cm DBH. The total basal area was 54.4 m^2-ha^-1, of which Castanopsis sieboldii contributed 48%. The forest showed high species diversity of trees. 80 tree species (≥ 3.0 cm DBH) from 31 families was identified in the thirty sampling plots. C. sieboldii and Schima wallichii were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were, 3.36 for Diversity index (H'), 0.71 for Equitability index (J') and 4.72 for Species richness index (S'), all of which strongly declined with the increase of importance value of the dominant, C. sieboldii. Measures of soil nutrients indicated low fertility, extreme heterogeneity and possible A1 toxicity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil exchangeable K^+, Ca^2+, and Ca^2+/Al^3- ratio (all p values 〈0.001) and a negative relationship with N, C and P. The results suggest that soil property is a major factor influencing forest composition and structure within the subtropical forest in Okinawa.展开更多
Dynamical patterns of mineral elements during decomposition processes were investigated for seven common canopy species in a subtropical evergreen broad-leaved forest by means of litterbag technique over 2 years. The ...Dynamical patterns of mineral elements during decomposition processes were investigated for seven common canopy species in a subtropical evergreen broad-leaved forest by means of litterbag technique over 2 years. The species studied are representative for the vegetation in the study area and differed significantly in chemical qualities of their litter. No significant relationships were found between decomposition rate (percentage dry mass remaining and decomposition constant k) and initial element cuncentrations.However, there were significant correlations betweeu the percentage of dry mass remaining and the mineral element concentrations in the remaining litter for most cases. The rank of the element mobility in decomposition process was as follows: Na = K 〉 Mg ≥ Ca 〉 N ≥ Mn ≥ Zn ≥ P 〉 Cu 〉〉 Al 〉〉 Fe. Concentrations of K and Na decreased in all species as decomposition proceeded. Calcium and Mg also decreased in concentrntion but with a temporal increase in the initial phase of decomposition, while the concentrations of other elements (Zn, Cu, AL and Fei increased for all species with exception of Mn which revealed a different pattern in different species. In most species, microelements (Cu, Al, and Fe) significantly increased in absolute amounts at the end of the litterbag incubation, which could be ascribed to a lange extent to the mechanism of abiotic fixation to humic substances rather than biological immobilization.展开更多
We investigated the floristic composition, woody species diversity and spatial distribution of trees in a tropical wet evergreen forest in Kaptai national park in Chittagong Hill Tracks, Bangladesh. We recorded 25 fam...We investigated the floristic composition, woody species diversity and spatial distribution of trees in a tropical wet evergreen forest in Kaptai national park in Chittagong Hill Tracks, Bangladesh. We recorded 25 families, 37 genera, 40 species and 1771 woody individuals in a 0.09 ha plot. Euphorbiaceae and Moraceae were the most species- rich families, and Castanopsis, Ficus and Terminaliawere the most species-rich genera. Bursera serrata Wall. ex Colebr. was the dominant species in terms of highest importance value (13%). Trema orientalis (L.) B1 was typically a light demanding species as it appeared in the top can- opy with only one individual having the seventh highest IV, but had no regeneration. The expected maximum number of species (Smax) was 140, indicating that many species may invade the forest as the Sm~ is greater than the recorded total number of species. The nature of the disappear- ance and appearance of species in the present forest reflects instability of floristic composition. The values of Shannon's index H' and Pielou's index J' (evenness) were 3.36 bit and 0.63, respectively. These values show moderately high species diversity as compared to other subtropical forests in the tropics. In addition, a sample area of 200 m2 in this forest would be sufficient for measuring the diversity indices H" and ,/', whereas the trend of J'may indicate the rate of equality of individuals among the different species decreased with increasing area. The distribu- tion pattern for the total stand was completely random. However, the dominant species showed aggregate distribution for small areas, but random distribution for large areas. The spatial association between species showed that the strongest positive interspecific association occurred between Streblus asper Lour. and Castanea indica Roxh. (09 = 0.51). As a whole, most species were weakly associated with each other, of which 58% species associations were completely negative. The result of cluster analysis showed that species pairs were spatially independent at all or most small clusters; stands of species from all clusters are mosa- ics of complete habitat and pioneer habitat. All patches in this forest community have similar habitat and regeneration niches, which could be a phenomenon for a young growth forest. Thus, the existence of habitat and regeneration niches may be an important factor in the maintenance of diversity in this forest.展开更多
Using the widely adopted scheme of space-for-time substitution for investigating 16 typical plots distri-buted as a pattern of contiguous grid quadrates within a sampling plot,the expressions of Shannon-Wiener index(H...Using the widely adopted scheme of space-for-time substitution for investigating 16 typical plots distri-buted as a pattern of contiguous grid quadrates within a sampling plot,the expressions of Shannon-Wiener index(H)for species diversity,Pielou index(J_(sw),J_(SI))for evenness and Simpson index(D)for ecological dominance are employed to investigate the species diversity(SD)of four evergreen broadleaved communities in the successions sequence within the Nature Reserve of the Gutian Mountains.Results showed that in the successions process from the coniferous to the mixed coniferous-broadleaved,then to Schima superba and finally to Castanopsis eyrei forest,the arbor layer SD showed the Shannon-Wiener index(H)as 1.9670,2.4975,2.6140 and 2.4356,respectively,characterized by their rise before drop and the shrub(herb)layer SD shows the maximum to be in the mixed coniferous-broadleaved(coniferous)forest(H arriving at 2.8625(1.5334)).In the vertical structure,on the other hand,for the sequenced coniferous forest,coniferous-broad mixed forest and Castnaopsis eyrei forest,the number of SD ranges in a decreasing order from the shrub,arbor to herb layer in contrast to the SD in a decreasing order of Schima superba forest ranging from the arbor to shrub and then to herb layer,and during the succession,the herb layer exhibits the maximum range of SD change among these layers,with its variation coefficients of 0.1572,0.0806,0.0899 and 0.1884 for H,J_(SW),J_(SI) and D,in order,in sharp contrast to the minimal SD range in the shrub layer,with the corresponding figures of 0.0482,0.0385,0.0142,and 0.1553.展开更多
We analyze the structure and composition of old-growth wet evergreen forest of Nelliampathy hills, the chain of hills lying immediately south of Palghat Gap, in the southern Western Ghats of India. We sampled 30 plots...We analyze the structure and composition of old-growth wet evergreen forest of Nelliampathy hills, the chain of hills lying immediately south of Palghat Gap, in the southern Western Ghats of India. We sampled 30 plots of 0.1 ha each (50 m × 20 m) at six locations enumerating all plants ? 10 cm girth at breast height. We pooled the data and computed various structural parameters. There were 152 species of 120 genera and 51 families of the study area. Of these, 118 (77%) were trees, 24 were climbers (16%) and 10 were shrubs (7%). Species richness varied from 58–99 per 0.5 ha sample and Shannon indices of diversity ranged from 4.4 to 5.2. Fifty-nine per cent (89 species) of the species were Indian Sub-continent elements and 34% (51 species) are endemic to the Western Ghats. Fifteen species are listed in various threat categories. Aglaia and Litsea were the most species-rich genera. Numbers of families ranged from 27–43 per 0.5 ha sample. Euphorbiaceae and Lauraceae were the most species-rich families. Stand density varied from 1714 to 2244 stems·ha?1 and basal area from 53.6 to 102.1 m2·ha?1. The vegetation was dominated by 3–6 species and six dominance patterns characterized the species composition within the hill complex. The old-growth evergreen forests of Nelliampathy exist as small fragments rich in biodiversity and can be used as benchmarks for comparison with disturbed forests.展开更多
Seed dispersal is a key process within community dynamics. The spatial and temporal variations of seed dispersal and the interspecific differences are crucial for understanding species coexistence and community dynami...Seed dispersal is a key process within community dynamics. The spatial and temporal variations of seed dispersal and the interspecific differences are crucial for understanding species coexistence and community dynamics. This might also hold for the mixed evergreen broadleaved and deciduous forests in the mountains of subtropical China, but until now little existing knowledge is available for this question. In 2001, we chose to monitor the seed rain process of our mixed evergreen broad-leaved and deciduous forest communities in Mount Dalaoling National Forest Park, Yichang, Hubei Province, China. The preliminary analyses show obvious variations in seed rain density, species compositions and timing of seed rain among four communities. The average seed rain densities of the four communities are 2.43 ± 5.15, 54.13 ±182.75, 10.05 ±19.30 and 24.91 ± 58.86 inds/m^2, respectively; about one tenth the values in other studies in subtropical forests of China. in each community, the seed production is dominated by a limited number of species, and the contributions from the others are generally minor. Fecundity of evergreen broadleaved tree species is weaker than deciduous species. The seed rain of four communities begins earlier than September, and stops before December, peaking from early September to late October. The beginning date, ending date and peak times of seed rain are extensively varied among the species, indicating different types of dispersal strategies. According to the existing data, the timing of seed rain is not determined by the climate conditions in the same period, while the density of seed rain may be affected by the disturbances of weather variations at a finer temporal resolution.展开更多
Understanding biogeographic patterns and the mechanisms underlying them has been a main issue in macroecology and biogeography, and has implications for biodiversity conservation and ecosystem sustainability. Evergree...Understanding biogeographic patterns and the mechanisms underlying them has been a main issue in macroecology and biogeography, and has implications for biodiversity conservation and ecosystem sustainability. Evergreen broad-leaved woody plants(EBWPs) are important components of numerous biomes and are the main contributors to the flora south of 35°N in China. We calculated the grid cell values of species richness(SR) for a total of 6265 EBWP species in China, including its four growth-forms(i.e., tree, shrub, vine, and bamboo), and estimated their phylogenetic structure using the standardized phylogenetic diversity(SPD) and net relatedness index(NRI). Then we linked the three biogeographical patterns that were observed with each single environmental variable representing the current climate, the last glacial maximum(LGM)–present climate variability, and habitat heterogeneity, using ordinary least squares regression with a modified t-test to account for spatial autocorrelation. The partial regression method based on a general linear model was used to decompose the contributions of current and historical environmental factors to the biogeographical patterns observed. The results showed that most regions with high numbers of EBWP species and phylogenetic diversity were distributed in tropical and subtropical mountains with evergreen shrubs extending to Northeast China. Current mean annual precipitation was the best single predictor. Topographic variation and its effect on temperature variation was the best single predictor for SPD and NRI. Partial regression indicated that the current climate dominated the SR patterns of Chinese EBWPs. The effect of paleo-climate variation on SR patterns mostly overlapped with that of the current climate. In contrast, the phylogenetic structure represented by SPD and NRI was constrained by paleo-climate to much larger extents than diversity, which was reflected by the LGM–present climate variation and topog-raphy-derived habitat heterogeneity in China. Our study highlights the importance of embedding multiple dimensions of biodiversity into a temporally hierarchical framework for understanding the biogeographical patterns, and provides important baseline information for predicting shifts in plant diversity under climate change.展开更多
Aims The relationships between plant species and soil microorganisms remain indeterminable in different ecosystems worldwide.In karst ecosystems,soil microbial(SM)community structure and their environmental driving fa...Aims The relationships between plant species and soil microorganisms remain indeterminable in different ecosystems worldwide.In karst ecosystems,soil microbial(SM)community structure and their environmental driving factors are poorly explored,and the relationships between plant species and soil microorganisms are unclear.This study aimed to characterize the general patterns of SM community composition and biomass,and to explore the specific tree species and soil physiochemical properties highly related to SM community diversity and biomass in a karst forest.Methods The effects of tree species on SM community composition and biomass were firstly investigated on the basis of 212 soil samples collected from five dominant tree species(Lithocarpus confinis Huang,Platycarya longipes Wu,Itea yunnanensis Franch.,Machilus cavaleriei H.Lév.and Carpinus pubescens Burkill)through phospholipid fatty acid(PLFA)analysis of a karst evergreen and deciduous broad-leaved mixed forest in central Guizhou Province,southwestern China.The relationships between SM community structure and tree species and soil physiochemical properties were statistically analysed.Important Findings A total of 132 SM-PLFA biomarkers were detected.The average number of SM-PLFA biomarkers and microbial biomass in each soil sample were 65.97 and 11.22µg g^(–1),respectively.Tree species influenced the number of SM-PLFA biomarkers but not the SM biomass.The number of SM-PLFA biomarkers of C.pubescens was significantly higher than that of other species(P<0.05);the numbers of SM-PLFA biomarkers amongst other species showed no significant difference.Microbial biomass showed no relationships with the soil physiochemical properties of nutrient-rich surface soils but positively correlated(P<0.05)with soil organic carbon,nitrogen and phosphorus concentrations in deeper soils.The karst forest in the plateau-surface terrain of central Guizhou Province presented a low fungal-to-bacterial ratio,low microbial biomass storage and high microbial community diversity.Specific tree species affect the SM community diversity in this kind of karst forest.展开更多
基金the National Natural Science Foundation of China(32260379&32371852)the Jiangxi Provincial Natural Science Foundation(20224ACB215005)
文摘Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.
基金Acknowledgments The authors thank Ming-Gang Zhang and Katharina Filz for suggestions about problem of multicollinearity and thank Damien Georges for suggestions about modeling.
文摘Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining activities and changing environment.The aims of the study are to investigate climate changeinduced changes of subtropical evergreen broad-leaved forests in Yunnan and identify areas of current species richness centers for conservation preparation.Stacked species distribution models were created to generate ensemble forecasting of species distributions,alpha diversity and beta diversity for Yunnan's subtropical evergreen broad-leaved forests in both current and future climate scenarios.Under stacked species distribution models in rapid climate changes scenarios,changes of water-energy dynamics may possibly reduce beta diversity and increase alpha diversity.This point provides insight for future conservation of evergreen broad-leaved forest in Yunnan,highlighting the need to fully consider the problem of vegetation homogenization caused by transformation of water-energy dynamics.
基金This item was supportedby the National ScienceFoundationof P.R.China (No.39330040,39460022)
文摘Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urgent to conserve and restore these natural forests in China. In this paper,the tendency and rate of species diversity restoration of the evergreen broad-leaved forest in Daming Mountain has been studied.The main resultsare as follows:(a)In subtropical mid-mountain area,species diversity in degraded evergreen broad-leaved forestcan be restored. Through analyzing b diversity index of communities in different time and space,it was found that the species composition of communities tend to be the same as that in the zonal evergreen broad-leaved forest.(b)The restoration rate of evergreen broad-leaved forest was very fast.Planting Chinese fir after clear-cutting and controlled burning of the forest,178 species appeared in a 600m^2 sample area after 20 years’natural recovering.Among the sespecies,58 were tree layer and the height of community reached 18m.The survey suggested that it would take only 20 years for the degraded forest to develop into community composed of lightdemanding broad-leaved pioneer trees and min-tolerance broad-leaved trees,and it need another 40~80 years to reach the stage consisting of min-tolerance evergreen broad-leaved trees.(c)Species number increased quickly at the early stage(2-20years)during vegetation recovering process toward the climax,and decreased at the min-stage (50-60 years),then maintained a relatively stable level at the late-stage (over 150 years).
基金supported by the National Natural Science Foundation of China,No.41471051,41071040,31170195
文摘The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous,island-like,distribution.It is diverse,rich in endemic species,and likely to be sensitive to climate change.Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan.All trees with d.b.h.>1 cm in each plot were identified.Patterns of seed plant distributions were quantified at the specific,generic and family levels.The forests are dominated by the families Fagaceae,Lauraceae,Theaceae and Magnoliaceae,but are very diverse with only a few species shared between sites.Floristic similarities at the family and generic level were high,but they were low at the specific level,with species complementarity between plots.Diversity varied greatly among sites,with greater species richness and more rare species in western Yunnan than central Yunnan.The flora is dominated by tropical biogeographical elements,mainly the pantropic and the tropical Asian distributions at the family and genus levels.In contrast,at the species level,the flora is dominated by the southwest or the southeast China distributions,including Yunnan endemics.This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin,and has adapted to cooler temperatures with the uplift of the Himalayas.Due to great sensitivity to climate,high endemism and species complementarity,as well as the discontinuous,island-like,distribution patterns of the upper montane forest in Yunnan,the regional conservation of the forest is especially needed.
基金supported financially by the Mac Arthur Foundation Scholarship Programthe Asian Institute of Technology(AIT) Fellowship Program
文摘Background: Within the highly bio-diverse ‘Northern Vietnam Lowland Rain Forests Ecoregion' only small, and mostly highly modified forestlands persist within vast exotic-species plantations. The aim of this study was to elucidate vegetation patterns of a secondary hillside rainforest remnant(elevation 120–330 m, 76 ha) as an outcome of natural processes, and anthropogenic processes linked to changing forest values.Methods: In the rainforest remnant tree species and various bio-physical parameters(relating to soils and terrain)were surveyed on forty 20 m × 20 m sized plots. The forest's vegetation patterns and tree diversity were analysed using dendrograms, canonical correspondence analysis, and other statistical tools.Results: Forest tree species richness was high(172 in the survey, 94 per hectare), including many endemic species(〉16%; some recently described). Vegetation patterns and diversity were largely explained by topography, with colline/sub-montane species present mainly along hillside ridges, and lowland/humid-tropical species predominant on lower slopes. Scarcity of high-value timber species reflected past logging, whereas abundance of light-demanding species, and species valued for fruits, provided evidence of human-aided forest restoration and ‘enrichment' in terms of useful trees. Exhaustion of sought-after forest products, and decreasing appreciation of non-wood products concurred with further encroachment of exotic plantations in between 2010 and 2015. Regeneration of rare tree species was reduced probably due to forest isolation.Conclusions: Despite long-term anthropogenic influences, remnant forests in the lowlands of Vietnam can harbor high plant biodiversity, including many endangered species. Various successive future changes(vanishing species, generalist dominance, and associated forest structural-qualitative changes) are, however, expected to occur in smal forest fragments.Lowland forest biodiversity can only be maintained if forest fragments maintain a certain size and/or are connected via corridors to larger forest networks. Preservation of the forests may be fostered using new economic incentive schemes.
基金supported by National Natural Science Foundation of China (No.30471386)Japanese Society for Promotion of Sciences (15P03118)
文摘Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 5400 stems-ha^-1 ( -〉 3.0 cm DBH); 64% of those stems were smaller than 10 cm DBH. The total basal area was 54.4 m^2-ha^-1, of which Castanopsis sieboldii contributed 48%. The forest showed high species diversity of trees. 80 tree species (≥ 3.0 cm DBH) from 31 families was identified in the thirty sampling plots. C. sieboldii and Schima wallichii were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were, 3.36 for Diversity index (H'), 0.71 for Equitability index (J') and 4.72 for Species richness index (S'), all of which strongly declined with the increase of importance value of the dominant, C. sieboldii. Measures of soil nutrients indicated low fertility, extreme heterogeneity and possible A1 toxicity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil exchangeable K^+, Ca^2+, and Ca^2+/Al^3- ratio (all p values 〈0.001) and a negative relationship with N, C and P. The results suggest that soil property is a major factor influencing forest composition and structure within the subtropical forest in Okinawa.
文摘Dynamical patterns of mineral elements during decomposition processes were investigated for seven common canopy species in a subtropical evergreen broad-leaved forest by means of litterbag technique over 2 years. The species studied are representative for the vegetation in the study area and differed significantly in chemical qualities of their litter. No significant relationships were found between decomposition rate (percentage dry mass remaining and decomposition constant k) and initial element cuncentrations.However, there were significant correlations betweeu the percentage of dry mass remaining and the mineral element concentrations in the remaining litter for most cases. The rank of the element mobility in decomposition process was as follows: Na = K 〉 Mg ≥ Ca 〉 N ≥ Mn ≥ Zn ≥ P 〉 Cu 〉〉 Al 〉〉 Fe. Concentrations of K and Na decreased in all species as decomposition proceeded. Calcium and Mg also decreased in concentrntion but with a temporal increase in the initial phase of decomposition, while the concentrations of other elements (Zn, Cu, AL and Fei increased for all species with exception of Mn which revealed a different pattern in different species. In most species, microelements (Cu, Al, and Fe) significantly increased in absolute amounts at the end of the litterbag incubation, which could be ascribed to a lange extent to the mechanism of abiotic fixation to humic substances rather than biological immobilization.
文摘We investigated the floristic composition, woody species diversity and spatial distribution of trees in a tropical wet evergreen forest in Kaptai national park in Chittagong Hill Tracks, Bangladesh. We recorded 25 families, 37 genera, 40 species and 1771 woody individuals in a 0.09 ha plot. Euphorbiaceae and Moraceae were the most species- rich families, and Castanopsis, Ficus and Terminaliawere the most species-rich genera. Bursera serrata Wall. ex Colebr. was the dominant species in terms of highest importance value (13%). Trema orientalis (L.) B1 was typically a light demanding species as it appeared in the top can- opy with only one individual having the seventh highest IV, but had no regeneration. The expected maximum number of species (Smax) was 140, indicating that many species may invade the forest as the Sm~ is greater than the recorded total number of species. The nature of the disappear- ance and appearance of species in the present forest reflects instability of floristic composition. The values of Shannon's index H' and Pielou's index J' (evenness) were 3.36 bit and 0.63, respectively. These values show moderately high species diversity as compared to other subtropical forests in the tropics. In addition, a sample area of 200 m2 in this forest would be sufficient for measuring the diversity indices H" and ,/', whereas the trend of J'may indicate the rate of equality of individuals among the different species decreased with increasing area. The distribu- tion pattern for the total stand was completely random. However, the dominant species showed aggregate distribution for small areas, but random distribution for large areas. The spatial association between species showed that the strongest positive interspecific association occurred between Streblus asper Lour. and Castanea indica Roxh. (09 = 0.51). As a whole, most species were weakly associated with each other, of which 58% species associations were completely negative. The result of cluster analysis showed that species pairs were spatially independent at all or most small clusters; stands of species from all clusters are mosa- ics of complete habitat and pioneer habitat. All patches in this forest community have similar habitat and regeneration niches, which could be a phenomenon for a young growth forest. Thus, the existence of habitat and regeneration niches may be an important factor in the maintenance of diversity in this forest.
基金This work was supported by the Natural Sciences Foundation of China(No.30200034)Natural Science Foundation of Zhejiang Province(No.301026).
文摘Using the widely adopted scheme of space-for-time substitution for investigating 16 typical plots distri-buted as a pattern of contiguous grid quadrates within a sampling plot,the expressions of Shannon-Wiener index(H)for species diversity,Pielou index(J_(sw),J_(SI))for evenness and Simpson index(D)for ecological dominance are employed to investigate the species diversity(SD)of four evergreen broadleaved communities in the successions sequence within the Nature Reserve of the Gutian Mountains.Results showed that in the successions process from the coniferous to the mixed coniferous-broadleaved,then to Schima superba and finally to Castanopsis eyrei forest,the arbor layer SD showed the Shannon-Wiener index(H)as 1.9670,2.4975,2.6140 and 2.4356,respectively,characterized by their rise before drop and the shrub(herb)layer SD shows the maximum to be in the mixed coniferous-broadleaved(coniferous)forest(H arriving at 2.8625(1.5334)).In the vertical structure,on the other hand,for the sequenced coniferous forest,coniferous-broad mixed forest and Castnaopsis eyrei forest,the number of SD ranges in a decreasing order from the shrub,arbor to herb layer in contrast to the SD in a decreasing order of Schima superba forest ranging from the arbor to shrub and then to herb layer,and during the succession,the herb layer exhibits the maximum range of SD change among these layers,with its variation coefficients of 0.1572,0.0806,0.0899 and 0.1884 for H,J_(SW),J_(SI) and D,in order,in sharp contrast to the minimal SD range in the shrub layer,with the corresponding figures of 0.0482,0.0385,0.0142,and 0.1553.
基金support from the Ministry of Environment and Forests, Government of India
文摘We analyze the structure and composition of old-growth wet evergreen forest of Nelliampathy hills, the chain of hills lying immediately south of Palghat Gap, in the southern Western Ghats of India. We sampled 30 plots of 0.1 ha each (50 m × 20 m) at six locations enumerating all plants ? 10 cm girth at breast height. We pooled the data and computed various structural parameters. There were 152 species of 120 genera and 51 families of the study area. Of these, 118 (77%) were trees, 24 were climbers (16%) and 10 were shrubs (7%). Species richness varied from 58–99 per 0.5 ha sample and Shannon indices of diversity ranged from 4.4 to 5.2. Fifty-nine per cent (89 species) of the species were Indian Sub-continent elements and 34% (51 species) are endemic to the Western Ghats. Fifteen species are listed in various threat categories. Aglaia and Litsea were the most species-rich genera. Numbers of families ranged from 27–43 per 0.5 ha sample. Euphorbiaceae and Lauraceae were the most species-rich families. Stand density varied from 1714 to 2244 stems·ha?1 and basal area from 53.6 to 102.1 m2·ha?1. The vegetation was dominated by 3–6 species and six dominance patterns characterized the species composition within the hill complex. The old-growth evergreen forests of Nelliampathy exist as small fragments rich in biodiversity and can be used as benchmarks for comparison with disturbed forests.
基金the National Natural Science Foundation of China(30000024,30470313).
文摘Seed dispersal is a key process within community dynamics. The spatial and temporal variations of seed dispersal and the interspecific differences are crucial for understanding species coexistence and community dynamics. This might also hold for the mixed evergreen broadleaved and deciduous forests in the mountains of subtropical China, but until now little existing knowledge is available for this question. In 2001, we chose to monitor the seed rain process of our mixed evergreen broad-leaved and deciduous forest communities in Mount Dalaoling National Forest Park, Yichang, Hubei Province, China. The preliminary analyses show obvious variations in seed rain density, species compositions and timing of seed rain among four communities. The average seed rain densities of the four communities are 2.43 ± 5.15, 54.13 ±182.75, 10.05 ±19.30 and 24.91 ± 58.86 inds/m^2, respectively; about one tenth the values in other studies in subtropical forests of China. in each community, the seed production is dominated by a limited number of species, and the contributions from the others are generally minor. Fecundity of evergreen broadleaved tree species is weaker than deciduous species. The seed rain of four communities begins earlier than September, and stops before December, peaking from early September to late October. The beginning date, ending date and peak times of seed rain are extensively varied among the species, indicating different types of dispersal strategies. According to the existing data, the timing of seed rain is not determined by the climate conditions in the same period, while the density of seed rain may be affected by the disturbances of weather variations at a finer temporal resolution.
基金National Natural Science Foundation of China,No.41790425,No.41701055National Key R&D Program of China,No.2017YFC0505200Major Project of the Yunnan Science and Technology Department,No.2018 FY001(-002)
文摘Understanding biogeographic patterns and the mechanisms underlying them has been a main issue in macroecology and biogeography, and has implications for biodiversity conservation and ecosystem sustainability. Evergreen broad-leaved woody plants(EBWPs) are important components of numerous biomes and are the main contributors to the flora south of 35°N in China. We calculated the grid cell values of species richness(SR) for a total of 6265 EBWP species in China, including its four growth-forms(i.e., tree, shrub, vine, and bamboo), and estimated their phylogenetic structure using the standardized phylogenetic diversity(SPD) and net relatedness index(NRI). Then we linked the three biogeographical patterns that were observed with each single environmental variable representing the current climate, the last glacial maximum(LGM)–present climate variability, and habitat heterogeneity, using ordinary least squares regression with a modified t-test to account for spatial autocorrelation. The partial regression method based on a general linear model was used to decompose the contributions of current and historical environmental factors to the biogeographical patterns observed. The results showed that most regions with high numbers of EBWP species and phylogenetic diversity were distributed in tropical and subtropical mountains with evergreen shrubs extending to Northeast China. Current mean annual precipitation was the best single predictor. Topographic variation and its effect on temperature variation was the best single predictor for SPD and NRI. Partial regression indicated that the current climate dominated the SR patterns of Chinese EBWPs. The effect of paleo-climate variation on SR patterns mostly overlapped with that of the current climate. In contrast, the phylogenetic structure represented by SPD and NRI was constrained by paleo-climate to much larger extents than diversity, which was reflected by the LGM–present climate variation and topog-raphy-derived habitat heterogeneity in China. Our study highlights the importance of embedding multiple dimensions of biodiversity into a temporally hierarchical framework for understanding the biogeographical patterns, and provides important baseline information for predicting shifts in plant diversity under climate change.
基金the National Basic Research Program of China(2016YFC0502304,2018YFC0507203,2016YFC0502101)the National Science Foundation of China(31870462)and the Natural Science Foundation of Zhejiang Province(LQ20C030003).
文摘Aims The relationships between plant species and soil microorganisms remain indeterminable in different ecosystems worldwide.In karst ecosystems,soil microbial(SM)community structure and their environmental driving factors are poorly explored,and the relationships between plant species and soil microorganisms are unclear.This study aimed to characterize the general patterns of SM community composition and biomass,and to explore the specific tree species and soil physiochemical properties highly related to SM community diversity and biomass in a karst forest.Methods The effects of tree species on SM community composition and biomass were firstly investigated on the basis of 212 soil samples collected from five dominant tree species(Lithocarpus confinis Huang,Platycarya longipes Wu,Itea yunnanensis Franch.,Machilus cavaleriei H.Lév.and Carpinus pubescens Burkill)through phospholipid fatty acid(PLFA)analysis of a karst evergreen and deciduous broad-leaved mixed forest in central Guizhou Province,southwestern China.The relationships between SM community structure and tree species and soil physiochemical properties were statistically analysed.Important Findings A total of 132 SM-PLFA biomarkers were detected.The average number of SM-PLFA biomarkers and microbial biomass in each soil sample were 65.97 and 11.22µg g^(–1),respectively.Tree species influenced the number of SM-PLFA biomarkers but not the SM biomass.The number of SM-PLFA biomarkers of C.pubescens was significantly higher than that of other species(P<0.05);the numbers of SM-PLFA biomarkers amongst other species showed no significant difference.Microbial biomass showed no relationships with the soil physiochemical properties of nutrient-rich surface soils but positively correlated(P<0.05)with soil organic carbon,nitrogen and phosphorus concentrations in deeper soils.The karst forest in the plateau-surface terrain of central Guizhou Province presented a low fungal-to-bacterial ratio,low microbial biomass storage and high microbial community diversity.Specific tree species affect the SM community diversity in this kind of karst forest.