The complex interactions of historical,geological and climatic events on plant evolution have been an important research focus for many years.However,the role of desert formation and expansion in shaping the genetic s...The complex interactions of historical,geological and climatic events on plant evolution have been an important research focus for many years.However,the role of desert formation and expansion in shaping the genetic structures and demographic histories of plants occurring in arid areas has not been well explored.In the present study,we investigated the phylogeography of Arnebia szechenyi,a desert herb showing a near-circular distribution surrounding the Tengger Desert in Northwest China.We measured genetic diversity of populations using three maternally inherited chloroplast DNA(cpDNA)fragments and seven bi-paternally inherited nuclear DNA(nDNA)loci that were sequenced from individuals collected from 16 natural populations across its range and modelled current and historical potential habitats of the species.Our data indicated a considerably high level of genetic variation within A.szechenyi and noteworthy asymmetry in historical migration from the east to the west.Moreover,two nuclear genetic groups of populations were revealed,corresponding to the two geographic regions separated by the Tengger Desert.However,analysis of cpDNA data did not show significant geographic structure.The most plausible explanation for the discrepancy between our findings based on cpDNA and nDNA data is that A.szechenyi populations experienced long periods of geographic isolation followed by range expansion,which would have promoted generalized recombination of the nuclear genome.Our findings further highlight the important role that the Tengger Desert,together with the Helan Mountains,has played in the evolution of desert plants and the preservation of biodiversity in arid Northwest China.展开更多
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo...The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems.展开更多
Gibberellin 2-oxidases(GA2ox)are important enzymes that maintain the balance of bioactive GAs in plants.GA2ox genes have been identified and characterized in many plants,but these genes were not investigated in Brassi...Gibberellin 2-oxidases(GA2ox)are important enzymes that maintain the balance of bioactive GAs in plants.GA2ox genes have been identified and characterized in many plants,but these genes were not investigated in Brassica napus.Here,we identified 31 GA2ox genes in B.napus and 15 of these BnaGA2ox genes were distributed in the A and C subgenomes.Subcellular localization predictions suggested that all BnaGA2ox proteins were localized in the cytoplasm,and gene structure analysis showed that the BnaGA2ox genes contained 2–4 exons.Phylogenetic analysis indicated that BnGA2ox family proteins in monocotyledons and dicotyledons can be divided into four groups,including two C_(19)-GA2ox and two C_(20)-GA2ox clades.Group 4 is a C_(20)-GA2ox Class discovered recently.Most BnaGA2ox genes had a syntenic relationship with AtGA2ox genes.BnaGA2ox genes in the C subgenome had experienced stronger selection pressure than genes in the A subgenome.BnaGA2ox genes were highly expressed in specific tissues such as those involved in growth and development,and most of them were mainly involved in abiotic responses,regulation of phytohormones and growth and development.Our study provided a valuable evolutionary analysis of GA2ox genes in monocotyledons and dicotyledons,as well as an insight into the biological functions of GA2ox family genes in B.napus.展开更多
River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been ...River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been collected in 40 sections of an experimental model.The whole flume was composed of an organic glass bend,upstream and downstream water tanks,two transition straight sections,a circulation pump,and a connection pipeline.Each section has been found to be characterized by a primary circulation and a small reverse circulation,with some sections even presenting three more or more circulation structures.The minimum circulation intensity has been detected in proximity to the top of the curved channel,while a region with small longitudinal velocity has been observed near the concave bank of each bend,corresponding to the flat bed formed after a short period of scouring.The maximum sediment deposition and scour depth in the presence of a uniform distribution of living flexible vegetation within 10 cm of the flume wall have been found to be smaller than those observed in the tests conducted without vegetation.展开更多
Cavitation generation methods have been used in multifarious directions because of their diversity,and numerous studies and discussions have been conducted on cavitation generation methods.This study aims to explore t...Cavitation generation methods have been used in multifarious directions because of their diversity,and numerous studies and discussions have been conducted on cavitation generation methods.This study aims to explore the generating mechanism and evolution law of volume alternate cavitation(VAC).In the VAC,liquid water is placed in an airtight container with a variable volume.As the volume alternately changes,the liquid water inside the container continues to cavitate.Then,the mixture turbulence model and in-cylinder dynamic grid model are adopted to conduct computational fluid dynamics simulation of volume alternate cavitation.In the simulation,the cloud images at seven heights on the central axis are monitored,and the phenomenon and mechanism of height and eccentricity are analyzed in detail.By employing the cavitation flow visualization method,the generating mechanism and evolution law of cavitation are revealed.The synergistic effects of experiments and high-speed camera capturing confirm the correctness of the simulation results.In the experiment,the volume change stroke of the airtight container is set to 20 mm,the volume change frequency is 18 Hz,and the shooting frequency of the high-speed camera is set to 10000 FPS.The experimental results indicate that the position of the cavitation phenomenon has a reasonable law during the whole evolution cycle of the cavitation cloud.Also,the volume alternation cycle corresponds to the generation,development,and collapse stages of cavitation bubbles.展开更多
Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding...Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the manamalian intefleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.展开更多
The partial sequences of exon Ⅰ of hormone-sensitive lipase (HSL) genes in yak (Bos grunniens), cattle (Bos taurus), zebu (Bos indicus), and buffalo (Bubalus bubalis) were analyzed. Comparisons of these seq...The partial sequences of exon Ⅰ of hormone-sensitive lipase (HSL) genes in yak (Bos grunniens), cattle (Bos taurus), zebu (Bos indicus), and buffalo (Bubalus bubalis) were analyzed. Comparisons of these sequences and the deduced amino acid sequences with the homologous HSL gene and protein sequences in other mammalian species including pig (Sus scrofa), human (Homo sapiens), mouse (Mus musculus), and rat (Rattus sp.) retrieved from the GenBank were carried out and finally a phylogenetic tree was constructed using the partial DNA sequences of the HSL genes in all species. The results showed that the homologies of the partial exon Ⅰ sequences of the HSL genes between yak and cattle, zebu, buffalo, pig, human, mouse, and rat were as high as 99.8%, 99.6%, 97.4%, 90.6%, 88.4%, 83.5%, and 82.3%, respectively. This was accompanied by highly homologous amino acid sequences of the HSLs: 100%, 100%, 98.2%, 94.0%, 92.2%, 89.8%, and 89.8% identity, respectively. There are more transitions, less transversions, and no insertion or deletion in variable nucleotides of the HSL genes between the yak and other species. The majority of the variable mutations was synonymous and was found most frequently at the third codon, followed by the first and second codons, a finding that was in accordance with the neutralism hypothesis for molecular evolution. In the phylogenetic tree, the cattle and zebu were clustered together first, followed by the yak, buffalo, pig, human, mouse, and rat. This was in agreement with taxonomy suggesting that the partial sequences of exon Ⅰ of the HSL genes were useful in constructing the phylogenetic tree of mammalian species. Among the four species of Bovidae, genetic differentiation in the HSL genes between yak and buffalo is equivalent to that between buffalo and cattle and between buffalo and zebu. Furthermore, the genetic distances in the HSL genes are much smaller between yak, cattle, and zebu than those between each of the three species and the buffalo. Therefore, it is reasonable to consider yak as an independent species of the genus Bos.展开更多
The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50...The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50 s-1. The deformed structures of the samples were observed by optical microscopy (OM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) analysis. The calculated activation energy is 147 kJ/mol, which is very close to the activation energy for lattice self-diffusion in aluminum (142 kJ/mol). Dynamic recovery is the dominant restoration mechanism during the deformation. At high strain rate of 50 s-1, temperature rise due to deformation heating leads to a significant flow softening. Microstructure observations indicated that the remaining softening after deformation heating correction at high strain rate and the softening observed at high temperature are associated with grain coarsening induced by grain boundary migration during dynamic recovery process.展开更多
Members of the transforming growth factor-beta superfamily, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP 15), have crucial roles in fecundity of sheep. Our previous investigation c...Members of the transforming growth factor-beta superfamily, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP 15), have crucial roles in fecundity of sheep. Our previous investigation confirmed that the fecundity mutations of sheep presented in highly prolific White goat individuals of Guizhou province. To illuminate other polymorphisms in Bmpl5 and Gdfl) genes and the relationship of these mutations with function, we cloned and characterized the coding region of Bmp15 and Gdfl). Molecular models of BMP15 and GDF9 mature peptide of White goat were constructed based on the homology of human BMP7 experimental tertiary structure. Two exons encoded prepropeptide of 394 amino acids in BMPI5 and 453 residues in GDF9, respectively. Apart from the FecXs mutation (S99I) in BMP15 and V791 mutation in GDF9 confirmed in White goat previously, other seven and three polymorphism sites were detected from BMP15 and GDF9 mature peptides, respectively. S32G, N66H, S99I/P99I and G107R in BMP15 could be important for the binding of dimer to receptors. Changes of P78Q and V79I in GDF9 might affect the binding of dimer to receptor type t. Comparing the length of BMP 15 and GDF9 prepropeptide in vertebrates, an increase in length of BMP 15 presented along with the protein evolution from fish to mammal and the divergence of the N-terminus residues in matured BMP15 peptide might contribute to the sensitive control on the fertility of animal species with low ovulation rate. These findings gave a valuable explanation for the correlation of mutations in Bmpl5 and Gdfl) genes with the control on fecundity of White goat and supported the notion that they were the pivotal factors in female fertility of White goat in Guizhou province.展开更多
The molecular composition and evolution of the chalcone synthase (CHS) gene family from five species in Camellia (Theaceae) are explored in this study. Sixteen CHS exon 2 from four Camellia species were amplified from...The molecular composition and evolution of the chalcone synthase (CHS) gene family from five species in Camellia (Theaceae) are explored in this study. Sixteen CHS exon 2 from four Camellia species were amplified from total DNA by PCR method. Three sequences of the fifth species in Camellia and two sequences of Glycine max as the designated outgroups were obtained from GenBank. Our results indicated that CHS gene family in Camellia was differentiated to three subfamilies (A, B, C) during the evolutionary history with six groups (A1, A2, A3, BI, B2, C). Among them, only group A2 was possessed by all five species in this study. However, the other five groups were detected only in some species of the plants studied. All members of CHS gene family in this study had high sequence similarity, more than 90% among the members in the same subfamily and more than 78% among different subfamilies at nucleotide level., According to the estimated components of amino acids, the function of CHS genes in Camellia had been diverged. The nucleotide substitutions of the different groups were not identical. Based on phylogenetic analyse inferred from sequences of CHS genes and their deduced amino acid sequences, we concluded that the CHS genes with new function in this genus were evolved either by mutations on several important sites or by accumulation of the mutations after the gene duplication. A further analysis showed that the diversification of CHS genes in Camellia still occurred recently, and the evolutionary models were different to some extant among different species. So we assumed that the different evolutionary models resulted from the impacts of variable environmental elements after the events of speciation.展开更多
Background:Understanding how species diversify is a long-standing question in biology.The allopatric speciation model is a classic hypothesis to explain the speciation process.This model supposes that there is no gene...Background:Understanding how species diversify is a long-standing question in biology.The allopatric speciation model is a classic hypothesis to explain the speciation process.This model supposes that there is no gene flow during the divergence process of geographically isolated populations.On the contrary,the speciation with gene flow model supposes that gene flow does occur during the speciation process.Whether allopatric species have gene flow during the speciation process is still an open question.Methods:We used the genetic information from 31 loci of 24 Chinese Bamboo Partridges(Bambusicola thoracicus)and 23 Taiwan Bamboo Partridges(B.sonorivox)to infer the gene flow model of the two species,using the approxi-mate Bayesian computation(ABC)model.The ecological niche model was used to infer the paleo-distribution during the glacial period.We also tested whether the two species had a conserved ecological niche by means of a back-ground similarity test.Results:The genetic data suggested that the post-divergence gene flow between the two species was terminated before the mid-Pleistocene.Furthermore,our ecological niche modeling suggested that their ecological niches were highly conserved,and that they shared an overlapping potential distribution range in the last glacial maximum.Conclusions:The allopatric speciation model cannot explain the speciation process of the two Bamboo Partridges.The results of this study supported a scenario in which speciation with gene flow occurring between the allopatric species and have contributed to our understanding of the speciation process.展开更多
Phenylalanine ammonia-lyase (PAL), the first enzyme of phenylpropanoid pathway, is always encoded by multigene families in plants. In this study, using genome-wide searches, 13 PAL genes in cucumber (CsPAL1-13) an...Phenylalanine ammonia-lyase (PAL), the first enzyme of phenylpropanoid pathway, is always encoded by multigene families in plants. In this study, using genome-wide searches, 13 PAL genes in cucumber (CsPAL1-13) and 13 PALs in melon (Cm- PALl-13) were identified. In the corresponding genomes, ten of these PAL genes were located in tandem in two clusters, while the others were widely dispersed in different chromosomes as a single copy. The protein sequences of CsPALs and CmPALs shared an overall high identity to each other. In our previous report, 12 PAL genes were identified in watermelon (CIPAL1-12). Thereby, a total of 38 cucurbit PAL members were included. Here, a comprehensive comparison of PAL gene families was performed among three cucurbit plants. The phylogenetic and syntenic analyses placed the cucurbit PALs as 11 CsPAL-CmPAL-CIPAL triples, of which ten triples were clustered into the dicot group, and the remaining one, CsPAL1-CmPAL8-CIPAL2, was grouped with gymnosperm PALs and might serve as an ancestor of cucurbit PALs. By comparing the syntenic relationships and gene structure of these PAL genes, the expansion of cucurbit PAL families might arise from a series of segmental and tandem duplications and intron insertion events. Furthermore, the expression profiling in different tissues suggested that different cucurbit PALs displayed divergent but overlapping expression profiles, and the CsPAL-CmPAL-CIPAL orthologs showed correlative expression patterns among three cucurbit plants. Taken together, this study provided an extensive description on the evolution and expression of cucurbit PAL gene families and might facilitate the further studies for elucidating the functions of PALs in cucurbit plants.展开更多
MicroRNAs (miRNAs) are 20-22 nucleotide non-coding RNAs that play important roles in plant and animal development. They are usually processed from larger precursors that can form stem-loop structures. Among 20 miRNA f...MicroRNAs (miRNAs) are 20-22 nucleotide non-coding RNAs that play important roles in plant and animal development. They are usually processed from larger precursors that can form stem-loop structures. Among 20 miRNA families that are conserved between Arabidopsis and rice, the rice miR395 gene family was unique because it was organized into compact clusters that could be transcribed as one single transcript. We show here that in fact this family had four clusters of total 24 genes. Three of these clusters were segmental duplications. They contained miR395 genes of both 120 bp and 66 bp long. However, only the latter was repeatedly duplicated. The fourth cluster contained miR395 genes of two different sizes that could be the consequences of intergenic recombination of genes from the first three clusters. On each cluster, both 1-duplication and 2-duplication histories were observed based on the sequence similarity between miR395 genes, some of which were nearly identical suggesting a recent origin. This was supported by a miR395 locus survey among several species of the genus Oryza, where two clusters were only found in species with an AA genome, the genome of the cultivated rice. A comparative study of the genomic organization of Medicago truncatula miR395 gene family showed significant expansion of intergenic spaces indicating that the originally clustered genes were drifting away from each other. The diverse genomic organizations of a conserved microRNA gene family in different plant genomes indicated that this important negative gene regulation system has undergone dramatic tune-ups in plant genomes.展开更多
The permeability of coal ahead of the working face obviously changes dues to changes in abutment pressure.The formation and evolution of gas flow channels within the abutment pressure area was studied by analyzing the...The permeability of coal ahead of the working face obviously changes dues to changes in abutment pressure.The formation and evolution of gas flow channels within the abutment pressure area was studied by analyzing the fracture extension mechanism and fracture development in different zones of the abutment pressure area.Fracture and damage mechanics theory is used to understand the observations.The following two techniques were used to understand the evolution of gas flow channels:field observation of the characteristic fractures at different positions relative to the working face and fluorescence micrographs of prepared coal samples.Bending tensile fractures develop along an approximately vertical direction that forms a microscopic network of channels in areas of stress concentration.The abutment pressure affects the local stress and,hence,the local gas conduction.The fractures induced by large deformation and plastic flow form macroscopically networked channels in the reduced stress area.Closer to the working face the gas flow channels evolve from microscopic to macroscopic and from isolated to network.Gas permeability continuously increases during this time.This is corroborated by field observations of the displacement of top coal and the gas flow from gas extraction drillings.展开更多
[Objective] This study aimed to explore the origin and evolution of poly- poids in Parakmeria Hu et Cheng through LEAFY gene clone and sequence analysis. [Method] In this study, LEAFY gene in Parakmeria species and it...[Objective] This study aimed to explore the origin and evolution of poly- poids in Parakmeria Hu et Cheng through LEAFY gene clone and sequence analysis. [Method] In this study, LEAFY gene in Parakmeria species and its relative genera was cloned and sequenced using molecular biology methods. With reference to LEAFY gene sequence published by NCBI, the origin pattern of polypoids in Parakmeria was explored and reasons for the distribution layout of different polypoids were analyzed through sequence alignment and phylogenetic analysis. [Result] Different Magnoliaceae species can be distinguished using the LEAFY gene, and there was a length polymorphism found in the 3+ end of the LEAFY gene, which can be used to divide Magnoliaceae plants of different species or in different genera, thus of high application value. [Conclusion] Most Parakmeria tetraploids are produced by polyploidization of homologous chromosomes, while Parakmeria hexaploids are chiefly produced by both polyploidization of homologous chromosomes and heterologous hybridization.展开更多
The microstructure evolution and its effect on flow stress of TC17 alloy during deformation in the α+β two-phase region were investigated via microstructure characterization and isothermal compression tests. Results...The microstructure evolution and its effect on flow stress of TC17 alloy during deformation in the α+β two-phase region were investigated via microstructure characterization and isothermal compression tests. Results showed that the spheroidized rate of α phase at 820 and 850℃ slightly increased with increasing strain. With increasing deformation temperature, the spheroidized rate of α phase showed a slight increasing trend, but the volume fraction of α phase significantly decreased. The flow stress at 780 ℃ and 1 s^-1 decreased continuously and steady state condition was not achieved up to strain of 1.2 due to dislocation annihilation and α lamellae rotation. Under this condition, the dynamic spheroidization was retarded. At the deformation temperatures of 820 and 850℃, and a strain rate of 1 s^-1, a steady state flow stress was observed at strains above 0.8 due to the balance between work hardening and dynamic softening. The dynamic softening was attributed to the α lamellae rotation, dynamic recovery and a little spheroidization.展开更多
A pair of flumes with variable inclinations were employed to investigate the entrainment mechanics and dynamical evolution of a debris avalanche/flow. A fixed quantity of solid and water mixture was released from a co...A pair of flumes with variable inclinations were employed to investigate the entrainment mechanics and dynamical evolution of a debris avalanche/flow. A fixed quantity of solid and water mixture was released from a constant elevation and accelerated along a higher chute to impact substrate materials with different water contents and particle size distributions in the lower chute. Two high-speed cameras, pore and earth pressure detecting devices, were placed in the substrate materials where severe scouring occurs in order to collect multiple measurements of dynamical and mechanical parameters. The entrainment dynamics were verified by geometrical analysis and quasi-static simulation. The results show that wet and fine materials that are placed in the lower chute with steeper slopes are easily entrained during debris flow initiation, the pattern of which can be described by Coulomb friction and the Mohr-Coulomb law. Elaborate measurements of dynamical parameters enable the results of an elementary computational framework to predict the time-dependent scouring depth ht, which provides insight into rapidly determining debris flow propagation. Finally, the post-entrainment dynamics were studied. The results indicate that the propagation and the amplification of debris flows along erodible beds are dominated by the velocity and the solid volume fraction of the mixed substrate, and the coarse particle group of the substrate is a key feature affected by momentum changes.展开更多
In order to exploit the evolution and find novel low-molecular-weight glutenin subunit (LMW-GS) for improvement of common wheat quality, thirteen variants from a somatic hybrid introgression line II-12 between Triti...In order to exploit the evolution and find novel low-molecular-weight glutenin subunit (LMW-GS) for improvement of common wheat quality, thirteen variants from a somatic hybrid introgression line II-12 between Triticum aestivum cv. Jinan 177 (JN177) and Agropyron elongatum were characterized via genomic PCR. Four clones were pseudogenes because they contained an internal stop codon. The remaining nine variants contained intact open reading frames (ORFs). Sequence alignment indicates that the proteins deduced from the nine ORFs have similar primary structure with LMW-GS cloned from its parents previously. However, they have some unique modifications in the structures. For example, EU292737 contains not only an extra Cys residue in the C-terminal domain but also a long repetitive domain. Both EU 159511 and EU292738 start their first Cys residue in the N-terminal repetitive domain, but not in the N-conserved domain traditionally. These structural alterations may have positive contributions to wheat flour quality. The results of phylogeny showed that most LMW-GS variances from 11-12 were homologous to those from parent JN177 and other wheat lines. The reason for quick evolution of LMW-GS in 11-12 was discussed.展开更多
Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental...Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental or abiotic stimuli.In order to understand the evolution and divergence patterns of the MLO gene family in Rosaceae plants,we analysed systematically genome-wide data from Fragaria vesca,Prunus persica,Prunus mume,Malus domestica,Pyrus bretschneideri and Rubus occidentalis based on bioinformatics methods.Using three phylogenetic methods(the neighbour-joining,maximum likelihood,and Bayesian methods),we identified 117 MLO genes from 6 Rosaceae species.The results of all three phylogenetic analysis methods supported that these genes were divided into six clades.Conserved motif analysis found that only motif 2 was present in all MLO proteins and had 3 nearly invariant amino acid residues.The findings indicated that motif 2 might be shared by the MLO gene family.The structural features of these genes showed large variations in sequence length among different species,although the lengths and the numbers of exons exhibited high degrees of similarity.Selective pressure analysis showed extremely significant differences in all 6 clades,with 2,1,and 1 site(s)under significant positive selection detected in clades III,IV,and VI,respectively.These positive selection sites were important driving forces for the promotion of the functional differentiation of the MLO genes.Functional divergence analysis showed that the significantly divergent sites were located within the domains of the MLO genes.Functional distance analysis showed that the clade V had more conservative functions and might have retained more original functions during the evolutionary process.However,clade I may have undergone extensive altered functional constraints as a specialised functional role.Moreover,the most original function of the MLO genes in Rosaceae could be related to the evolution of their resistance to powdery mildew,which then gradually evolved into functions such as the regulation of flower development,the control of root morphology,and seed evolution due to the different evolutionary rates after gene duplication.These results provide a theoretical basis for further studies of the molecular evolutionary patterns of the plant MLO gene family.展开更多
The Wenchuan earthquake that occurred on 12 May 2008 induced numerous landslides.Loose landslide materials were deposited on hillslopes,and deep channels were easily remobilized and transformed into debris flows by ex...The Wenchuan earthquake that occurred on 12 May 2008 induced numerous landslides.Loose landslide materials were deposited on hillslopes,and deep channels were easily remobilized and transformed into debris flows by extreme rainstorms.Twelve years after the Wenchuan earthquake,debris flows were still active in the Qipangou Ravine in the quake-hit area.In this paper,we continuously tracked the spatiotemporal evolution of the landslides and vegetation restoration and evaluated the evolution of debris flow activity in the Qipan catchment with the aid of a GIS platform and field investigations from 2008 to 2019.We observed that the area with active landslides increased sharply immediately following the earthquake,and then decreased with time;however,the total area of landslides continued to increase from 6.93 km^(2)in 2008 to 10.55 km^(2)in 2019.The active landslides shifted towards lower angles and higher elevations after 2013.Since 2009,the vegetation coverage has been gradually increasing and approaching the coverage present before the earthquake as of 2019.The landslide activity was high and the vegetation recovery rates were rapidly rising during the first five years after the earthquake;the recovery rates then slowed over time.Therefore,we divided the evolution that occurred during the post landslide period into an active period(2008-2013),a self-adjustment period(2013-2026)and a stable period(after 2026).We then proposed a quantitative model to determine the trends of landslide activity rates and NDVI values in the catchment,which indicated that the landslide activities and postseismic vegetation restoration rates in this catchment will return to preseismic levels within approximately two decades.We also analysed the runout volumes of the debris flows after the earthquakes(Diexi and Wenchuan)and the standard deviation of the vegetation coverage and predicted that the debris flow activities will last for an additional 50 years or more.展开更多
基金supported by the National Natural Science Foundation of China(41861008)Science Foundation of Yunnan Education Department(2018JS347)the Ten-thousand Talents Program of Yunnan Province(YNWR-QNBJ-2020).
文摘The complex interactions of historical,geological and climatic events on plant evolution have been an important research focus for many years.However,the role of desert formation and expansion in shaping the genetic structures and demographic histories of plants occurring in arid areas has not been well explored.In the present study,we investigated the phylogeography of Arnebia szechenyi,a desert herb showing a near-circular distribution surrounding the Tengger Desert in Northwest China.We measured genetic diversity of populations using three maternally inherited chloroplast DNA(cpDNA)fragments and seven bi-paternally inherited nuclear DNA(nDNA)loci that were sequenced from individuals collected from 16 natural populations across its range and modelled current and historical potential habitats of the species.Our data indicated a considerably high level of genetic variation within A.szechenyi and noteworthy asymmetry in historical migration from the east to the west.Moreover,two nuclear genetic groups of populations were revealed,corresponding to the two geographic regions separated by the Tengger Desert.However,analysis of cpDNA data did not show significant geographic structure.The most plausible explanation for the discrepancy between our findings based on cpDNA and nDNA data is that A.szechenyi populations experienced long periods of geographic isolation followed by range expansion,which would have promoted generalized recombination of the nuclear genome.Our findings further highlight the important role that the Tengger Desert,together with the Helan Mountains,has played in the evolution of desert plants and the preservation of biodiversity in arid Northwest China.
基金financial support through a KekuléPh.D.fellowship by the Fonds der Chemischen Industrie(FCI)support from the China Scholarship Council(No.202106950013)。
文摘The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems.
基金supported by the Chongqing Academy of Agricultural Sciences Youth Innovation Team Project(NKY-2018QC01)Chongqing Finance Special Project(NKY-2022AC002)+2 种基金the Natural Science Foundation Project of Yongchuan(2021yc-jckx20013)the Technology Innovation and Application Development(Surface)Project of Yongchuan(2021yc-cxfz30007)the National Oilseed Rape Industrial Technology System Sanxia Comprehensive Experiment Station Project(CARS-13).
文摘Gibberellin 2-oxidases(GA2ox)are important enzymes that maintain the balance of bioactive GAs in plants.GA2ox genes have been identified and characterized in many plants,but these genes were not investigated in Brassica napus.Here,we identified 31 GA2ox genes in B.napus and 15 of these BnaGA2ox genes were distributed in the A and C subgenomes.Subcellular localization predictions suggested that all BnaGA2ox proteins were localized in the cytoplasm,and gene structure analysis showed that the BnaGA2ox genes contained 2–4 exons.Phylogenetic analysis indicated that BnGA2ox family proteins in monocotyledons and dicotyledons can be divided into four groups,including two C_(19)-GA2ox and two C_(20)-GA2ox clades.Group 4 is a C_(20)-GA2ox Class discovered recently.Most BnaGA2ox genes had a syntenic relationship with AtGA2ox genes.BnaGA2ox genes in the C subgenome had experienced stronger selection pressure than genes in the A subgenome.BnaGA2ox genes were highly expressed in specific tissues such as those involved in growth and development,and most of them were mainly involved in abiotic responses,regulation of phytohormones and growth and development.Our study provided a valuable evolutionary analysis of GA2ox genes in monocotyledons and dicotyledons,as well as an insight into the biological functions of GA2ox family genes in B.napus.
基金supported in part by the Special Fund for Basic Scientific Research Business Expenses of Central Public Welfare Scientific Research Institutes under Grant TKS20210103the Open Fund of Key Laboratory of Ocean Observation Technology,Ministry of Natural Resources of China(2021klootA06).
文摘River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been collected in 40 sections of an experimental model.The whole flume was composed of an organic glass bend,upstream and downstream water tanks,two transition straight sections,a circulation pump,and a connection pipeline.Each section has been found to be characterized by a primary circulation and a small reverse circulation,with some sections even presenting three more or more circulation structures.The minimum circulation intensity has been detected in proximity to the top of the curved channel,while a region with small longitudinal velocity has been observed near the concave bank of each bend,corresponding to the flat bed formed after a short period of scouring.The maximum sediment deposition and scour depth in the presence of a uniform distribution of living flexible vegetation within 10 cm of the flume wall have been found to be smaller than those observed in the tests conducted without vegetation.
基金Supported by National Nature Science Foundation of China(Grant No.51575245)Jiangsu Provincial Key research and development program(Grant No.BE2015134)Zhenjiang Municipal Key Research and Development Project(Grant No.KZ2020001).
文摘Cavitation generation methods have been used in multifarious directions because of their diversity,and numerous studies and discussions have been conducted on cavitation generation methods.This study aims to explore the generating mechanism and evolution law of volume alternate cavitation(VAC).In the VAC,liquid water is placed in an airtight container with a variable volume.As the volume alternately changes,the liquid water inside the container continues to cavitate.Then,the mixture turbulence model and in-cylinder dynamic grid model are adopted to conduct computational fluid dynamics simulation of volume alternate cavitation.In the simulation,the cloud images at seven heights on the central axis are monitored,and the phenomenon and mechanism of height and eccentricity are analyzed in detail.By employing the cavitation flow visualization method,the generating mechanism and evolution law of cavitation are revealed.The synergistic effects of experiments and high-speed camera capturing confirm the correctness of the simulation results.In the experiment,the volume change stroke of the airtight container is set to 20 mm,the volume change frequency is 18 Hz,and the shooting frequency of the high-speed camera is set to 10000 FPS.The experimental results indicate that the position of the cavitation phenomenon has a reasonable law during the whole evolution cycle of the cavitation cloud.Also,the volume alternation cycle corresponds to the generation,development,and collapse stages of cavitation bubbles.
基金This work was supported by grants from the Natural Science Foundation of China (No. 30470990, No. 30571063)the"948"Project from the Minister of Agriculture in China, the"973"Project from the Minister of Science and Technology (No.2006CB101904)+1 种基金Hunan Natural Science Foundation (No.06JJ10006)Scientific Research Fund of Hunan Provincial Education department (No.04A024).
文摘Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the manamalian intefleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.
基金This work was supported by the Foundation of Application and Foundation Research of Sichuan Province in China (No. 03JY029-034).
文摘The partial sequences of exon Ⅰ of hormone-sensitive lipase (HSL) genes in yak (Bos grunniens), cattle (Bos taurus), zebu (Bos indicus), and buffalo (Bubalus bubalis) were analyzed. Comparisons of these sequences and the deduced amino acid sequences with the homologous HSL gene and protein sequences in other mammalian species including pig (Sus scrofa), human (Homo sapiens), mouse (Mus musculus), and rat (Rattus sp.) retrieved from the GenBank were carried out and finally a phylogenetic tree was constructed using the partial DNA sequences of the HSL genes in all species. The results showed that the homologies of the partial exon Ⅰ sequences of the HSL genes between yak and cattle, zebu, buffalo, pig, human, mouse, and rat were as high as 99.8%, 99.6%, 97.4%, 90.6%, 88.4%, 83.5%, and 82.3%, respectively. This was accompanied by highly homologous amino acid sequences of the HSLs: 100%, 100%, 98.2%, 94.0%, 92.2%, 89.8%, and 89.8% identity, respectively. There are more transitions, less transversions, and no insertion or deletion in variable nucleotides of the HSL genes between the yak and other species. The majority of the variable mutations was synonymous and was found most frequently at the third codon, followed by the first and second codons, a finding that was in accordance with the neutralism hypothesis for molecular evolution. In the phylogenetic tree, the cattle and zebu were clustered together first, followed by the yak, buffalo, pig, human, mouse, and rat. This was in agreement with taxonomy suggesting that the partial sequences of exon Ⅰ of the HSL genes were useful in constructing the phylogenetic tree of mammalian species. Among the four species of Bovidae, genetic differentiation in the HSL genes between yak and buffalo is equivalent to that between buffalo and cattle and between buffalo and zebu. Furthermore, the genetic distances in the HSL genes are much smaller between yak, cattle, and zebu than those between each of the three species and the buffalo. Therefore, it is reasonable to consider yak as an independent species of the genus Bos.
基金Project(51075132)supported by the National Natural Science Foundation of ChinaProject(20090161110027)supported by the Doctoral Fund of Ministry of Education of ChinaProject(2011BAG03B02)supported by National Key Technology R&D Program during the 12th Five-Year Plan Period,China
文摘The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50 s-1. The deformed structures of the samples were observed by optical microscopy (OM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) analysis. The calculated activation energy is 147 kJ/mol, which is very close to the activation energy for lattice self-diffusion in aluminum (142 kJ/mol). Dynamic recovery is the dominant restoration mechanism during the deformation. At high strain rate of 50 s-1, temperature rise due to deformation heating leads to a significant flow softening. Microstructure observations indicated that the remaining softening after deformation heating correction at high strain rate and the softening observed at high temperature are associated with grain coarsening induced by grain boundary migration during dynamic recovery process.
基金the National Natural Science Foundation of China (30560104)~~
文摘Members of the transforming growth factor-beta superfamily, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP 15), have crucial roles in fecundity of sheep. Our previous investigation confirmed that the fecundity mutations of sheep presented in highly prolific White goat individuals of Guizhou province. To illuminate other polymorphisms in Bmpl5 and Gdfl) genes and the relationship of these mutations with function, we cloned and characterized the coding region of Bmp15 and Gdfl). Molecular models of BMP15 and GDF9 mature peptide of White goat were constructed based on the homology of human BMP7 experimental tertiary structure. Two exons encoded prepropeptide of 394 amino acids in BMPI5 and 453 residues in GDF9, respectively. Apart from the FecXs mutation (S99I) in BMP15 and V791 mutation in GDF9 confirmed in White goat previously, other seven and three polymorphism sites were detected from BMP15 and GDF9 mature peptides, respectively. S32G, N66H, S99I/P99I and G107R in BMP15 could be important for the binding of dimer to receptors. Changes of P78Q and V79I in GDF9 might affect the binding of dimer to receptor type t. Comparing the length of BMP 15 and GDF9 prepropeptide in vertebrates, an increase in length of BMP 15 presented along with the protein evolution from fish to mammal and the divergence of the N-terminus residues in matured BMP15 peptide might contribute to the sensitive control on the fertility of animal species with low ovulation rate. These findings gave a valuable explanation for the correlation of mutations in Bmpl5 and Gdfl) genes with the control on fecundity of White goat and supported the notion that they were the pivotal factors in female fertility of White goat in Guizhou province.
文摘The molecular composition and evolution of the chalcone synthase (CHS) gene family from five species in Camellia (Theaceae) are explored in this study. Sixteen CHS exon 2 from four Camellia species were amplified from total DNA by PCR method. Three sequences of the fifth species in Camellia and two sequences of Glycine max as the designated outgroups were obtained from GenBank. Our results indicated that CHS gene family in Camellia was differentiated to three subfamilies (A, B, C) during the evolutionary history with six groups (A1, A2, A3, BI, B2, C). Among them, only group A2 was possessed by all five species in this study. However, the other five groups were detected only in some species of the plants studied. All members of CHS gene family in this study had high sequence similarity, more than 90% among the members in the same subfamily and more than 78% among different subfamilies at nucleotide level., According to the estimated components of amino acids, the function of CHS genes in Camellia had been diverged. The nucleotide substitutions of the different groups were not identical. Based on phylogenetic analyse inferred from sequences of CHS genes and their deduced amino acid sequences, we concluded that the CHS genes with new function in this genus were evolved either by mutations on several important sites or by accumulation of the mutations after the gene duplication. A further analysis showed that the diversification of CHS genes in Camellia still occurred recently, and the evolutionary models were different to some extant among different species. So we assumed that the different evolutionary models resulted from the impacts of variable environmental elements after the events of speciation.
基金This work was supported by the China Postdoctoral Science Foundation(2019M660044)National Natural Science Foundation of China(31872244)Biodiversity Survey,Monitoring and Assessment Project of Ministry of Ecology and Environment,China(2019HB2096001006 to Z.W.Z).
文摘Background:Understanding how species diversify is a long-standing question in biology.The allopatric speciation model is a classic hypothesis to explain the speciation process.This model supposes that there is no gene flow during the divergence process of geographically isolated populations.On the contrary,the speciation with gene flow model supposes that gene flow does occur during the speciation process.Whether allopatric species have gene flow during the speciation process is still an open question.Methods:We used the genetic information from 31 loci of 24 Chinese Bamboo Partridges(Bambusicola thoracicus)and 23 Taiwan Bamboo Partridges(B.sonorivox)to infer the gene flow model of the two species,using the approxi-mate Bayesian computation(ABC)model.The ecological niche model was used to infer the paleo-distribution during the glacial period.We also tested whether the two species had a conserved ecological niche by means of a back-ground similarity test.Results:The genetic data suggested that the post-divergence gene flow between the two species was terminated before the mid-Pleistocene.Furthermore,our ecological niche modeling suggested that their ecological niches were highly conserved,and that they shared an overlapping potential distribution range in the last glacial maximum.Conclusions:The allopatric speciation model cannot explain the speciation process of the two Bamboo Partridges.The results of this study supported a scenario in which speciation with gene flow occurring between the allopatric species and have contributed to our understanding of the speciation process.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China (31101548)the Special Fund for Agro-Scientific Research in the Public Interest, China (201303014)+1 种基金funded by the China Agriculture Research System (CARS-25)the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS)
文摘Phenylalanine ammonia-lyase (PAL), the first enzyme of phenylpropanoid pathway, is always encoded by multigene families in plants. In this study, using genome-wide searches, 13 PAL genes in cucumber (CsPAL1-13) and 13 PALs in melon (Cm- PALl-13) were identified. In the corresponding genomes, ten of these PAL genes were located in tandem in two clusters, while the others were widely dispersed in different chromosomes as a single copy. The protein sequences of CsPALs and CmPALs shared an overall high identity to each other. In our previous report, 12 PAL genes were identified in watermelon (CIPAL1-12). Thereby, a total of 38 cucurbit PAL members were included. Here, a comprehensive comparison of PAL gene families was performed among three cucurbit plants. The phylogenetic and syntenic analyses placed the cucurbit PALs as 11 CsPAL-CmPAL-CIPAL triples, of which ten triples were clustered into the dicot group, and the remaining one, CsPAL1-CmPAL8-CIPAL2, was grouped with gymnosperm PALs and might serve as an ancestor of cucurbit PALs. By comparing the syntenic relationships and gene structure of these PAL genes, the expansion of cucurbit PAL families might arise from a series of segmental and tandem duplications and intron insertion events. Furthermore, the expression profiling in different tissues suggested that different cucurbit PALs displayed divergent but overlapping expression profiles, and the CsPAL-CmPAL-CIPAL orthologs showed correlative expression patterns among three cucurbit plants. Taken together, this study provided an extensive description on the evolution and expression of cucurbit PAL gene families and might facilitate the further studies for elucidating the functions of PALs in cucurbit plants.
基金supported in part by a grant from Northern Illinois University Foundation to Long MAONational Institutes of Health(NIH)grant to Mitrick JOHNS and Long MAO(No.44-G1A62164)a grant from the National Natural Science Foundation of China for oversea young scholars to Long MAO(No.30228022).
文摘MicroRNAs (miRNAs) are 20-22 nucleotide non-coding RNAs that play important roles in plant and animal development. They are usually processed from larger precursors that can form stem-loop structures. Among 20 miRNA families that are conserved between Arabidopsis and rice, the rice miR395 gene family was unique because it was organized into compact clusters that could be transcribed as one single transcript. We show here that in fact this family had four clusters of total 24 genes. Three of these clusters were segmental duplications. They contained miR395 genes of both 120 bp and 66 bp long. However, only the latter was repeatedly duplicated. The fourth cluster contained miR395 genes of two different sizes that could be the consequences of intergenic recombination of genes from the first three clusters. On each cluster, both 1-duplication and 2-duplication histories were observed based on the sequence similarity between miR395 genes, some of which were nearly identical suggesting a recent origin. This was supported by a miR395 locus survey among several species of the genus Oryza, where two clusters were only found in species with an AA genome, the genome of the cultivated rice. A comparative study of the genomic organization of Medicago truncatula miR395 gene family showed significant expansion of intergenic spaces indicating that the originally clustered genes were drifting away from each other. The diverse genomic organizations of a conserved microRNA gene family in different plant genomes indicated that this important negative gene regulation system has undergone dramatic tune-ups in plant genomes.
基金supported by a Grant from the State Key Basic Research Program of China(No.2011CB201204)the Central University Basic Scientific Research Business Expenses(No.2011ZY05)
文摘The permeability of coal ahead of the working face obviously changes dues to changes in abutment pressure.The formation and evolution of gas flow channels within the abutment pressure area was studied by analyzing the fracture extension mechanism and fracture development in different zones of the abutment pressure area.Fracture and damage mechanics theory is used to understand the observations.The following two techniques were used to understand the evolution of gas flow channels:field observation of the characteristic fractures at different positions relative to the working face and fluorescence micrographs of prepared coal samples.Bending tensile fractures develop along an approximately vertical direction that forms a microscopic network of channels in areas of stress concentration.The abutment pressure affects the local stress and,hence,the local gas conduction.The fractures induced by large deformation and plastic flow form macroscopically networked channels in the reduced stress area.Closer to the working face the gas flow channels evolve from microscopic to macroscopic and from isolated to network.Gas permeability continuously increases during this time.This is corroborated by field observations of the displacement of top coal and the gas flow from gas extraction drillings.
基金Supported by the National Natural Science Foundation of China(NSFC31160432)the Key Project of Department of Education,Yunnan Province(2011Z108)~~
文摘[Objective] This study aimed to explore the origin and evolution of poly- poids in Parakmeria Hu et Cheng through LEAFY gene clone and sequence analysis. [Method] In this study, LEAFY gene in Parakmeria species and its relative genera was cloned and sequenced using molecular biology methods. With reference to LEAFY gene sequence published by NCBI, the origin pattern of polypoids in Parakmeria was explored and reasons for the distribution layout of different polypoids were analyzed through sequence alignment and phylogenetic analysis. [Result] Different Magnoliaceae species can be distinguished using the LEAFY gene, and there was a length polymorphism found in the 3+ end of the LEAFY gene, which can be used to divide Magnoliaceae plants of different species or in different genera, thus of high application value. [Conclusion] Most Parakmeria tetraploids are produced by polyploidization of homologous chromosomes, while Parakmeria hexaploids are chiefly produced by both polyploidization of homologous chromosomes and heterologous hybridization.
基金Project(51575446)supported by the National Natural Science Foundation of ChinaProject(2017KJXX-27)supported by the Shaanxi Province Youth Science and Technology New Star Plan,ChinaProject(3102017AX003)supported by the Fundamental Research Funds for the Central Universities,China
文摘The microstructure evolution and its effect on flow stress of TC17 alloy during deformation in the α+β two-phase region were investigated via microstructure characterization and isothermal compression tests. Results showed that the spheroidized rate of α phase at 820 and 850℃ slightly increased with increasing strain. With increasing deformation temperature, the spheroidized rate of α phase showed a slight increasing trend, but the volume fraction of α phase significantly decreased. The flow stress at 780 ℃ and 1 s^-1 decreased continuously and steady state condition was not achieved up to strain of 1.2 due to dislocation annihilation and α lamellae rotation. Under this condition, the dynamic spheroidization was retarded. At the deformation temperatures of 820 and 850℃, and a strain rate of 1 s^-1, a steady state flow stress was observed at strains above 0.8 due to the balance between work hardening and dynamic softening. The dynamic softening was attributed to the α lamellae rotation, dynamic recovery and a little spheroidization.
基金the support of the National Key R&D Program of China (2017YFC1501102)the National Natural Science Foundation of China (51639007)the Youth Science and Technology Fund of Sichuan Province (2016JQ0011)
文摘A pair of flumes with variable inclinations were employed to investigate the entrainment mechanics and dynamical evolution of a debris avalanche/flow. A fixed quantity of solid and water mixture was released from a constant elevation and accelerated along a higher chute to impact substrate materials with different water contents and particle size distributions in the lower chute. Two high-speed cameras, pore and earth pressure detecting devices, were placed in the substrate materials where severe scouring occurs in order to collect multiple measurements of dynamical and mechanical parameters. The entrainment dynamics were verified by geometrical analysis and quasi-static simulation. The results show that wet and fine materials that are placed in the lower chute with steeper slopes are easily entrained during debris flow initiation, the pattern of which can be described by Coulomb friction and the Mohr-Coulomb law. Elaborate measurements of dynamical parameters enable the results of an elementary computational framework to predict the time-dependent scouring depth ht, which provides insight into rapidly determining debris flow propagation. Finally, the post-entrainment dynamics were studied. The results indicate that the propagation and the amplification of debris flows along erodible beds are dominated by the velocity and the solid volume fraction of the mixed substrate, and the coarse particle group of the substrate is a key feature affected by momentum changes.
基金supported by the National High Technology Research and Development Program(No.2006AA10Z173 and 2006011001020)the Natural Science Foundation of Shandong Province(Y2007D48)
文摘In order to exploit the evolution and find novel low-molecular-weight glutenin subunit (LMW-GS) for improvement of common wheat quality, thirteen variants from a somatic hybrid introgression line II-12 between Triticum aestivum cv. Jinan 177 (JN177) and Agropyron elongatum were characterized via genomic PCR. Four clones were pseudogenes because they contained an internal stop codon. The remaining nine variants contained intact open reading frames (ORFs). Sequence alignment indicates that the proteins deduced from the nine ORFs have similar primary structure with LMW-GS cloned from its parents previously. However, they have some unique modifications in the structures. For example, EU292737 contains not only an extra Cys residue in the C-terminal domain but also a long repetitive domain. Both EU 159511 and EU292738 start their first Cys residue in the N-terminal repetitive domain, but not in the N-conserved domain traditionally. These structural alterations may have positive contributions to wheat flour quality. The results of phylogeny showed that most LMW-GS variances from 11-12 were homologous to those from parent JN177 and other wheat lines. The reason for quick evolution of LMW-GS in 11-12 was discussed.
基金supported by the National Key R&D Program of China(Grant No.2018YFD1000400)National Natural Science Foundation of China(Grant Nos.31860571 and 31560565)+1 种基金Major Science and Technology Projects Yunnan Province(Grant No.2016ZA005)Yunnan Youth Academic&Technical Leaders Reserve Talents Training Project(Grant No.2015HB078)。
文摘Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental or abiotic stimuli.In order to understand the evolution and divergence patterns of the MLO gene family in Rosaceae plants,we analysed systematically genome-wide data from Fragaria vesca,Prunus persica,Prunus mume,Malus domestica,Pyrus bretschneideri and Rubus occidentalis based on bioinformatics methods.Using three phylogenetic methods(the neighbour-joining,maximum likelihood,and Bayesian methods),we identified 117 MLO genes from 6 Rosaceae species.The results of all three phylogenetic analysis methods supported that these genes were divided into six clades.Conserved motif analysis found that only motif 2 was present in all MLO proteins and had 3 nearly invariant amino acid residues.The findings indicated that motif 2 might be shared by the MLO gene family.The structural features of these genes showed large variations in sequence length among different species,although the lengths and the numbers of exons exhibited high degrees of similarity.Selective pressure analysis showed extremely significant differences in all 6 clades,with 2,1,and 1 site(s)under significant positive selection detected in clades III,IV,and VI,respectively.These positive selection sites were important driving forces for the promotion of the functional differentiation of the MLO genes.Functional divergence analysis showed that the significantly divergent sites were located within the domains of the MLO genes.Functional distance analysis showed that the clade V had more conservative functions and might have retained more original functions during the evolutionary process.However,clade I may have undergone extensive altered functional constraints as a specialised functional role.Moreover,the most original function of the MLO genes in Rosaceae could be related to the evolution of their resistance to powdery mildew,which then gradually evolved into functions such as the regulation of flower development,the control of root morphology,and seed evolution due to the different evolutionary rates after gene duplication.These results provide a theoretical basis for further studies of the molecular evolutionary patterns of the plant MLO gene family.
基金supported by the National Key Research and Development Program of China(No.2017YFC1501004)the National Natural Science Foundation of China(No.41672299)。
文摘The Wenchuan earthquake that occurred on 12 May 2008 induced numerous landslides.Loose landslide materials were deposited on hillslopes,and deep channels were easily remobilized and transformed into debris flows by extreme rainstorms.Twelve years after the Wenchuan earthquake,debris flows were still active in the Qipangou Ravine in the quake-hit area.In this paper,we continuously tracked the spatiotemporal evolution of the landslides and vegetation restoration and evaluated the evolution of debris flow activity in the Qipan catchment with the aid of a GIS platform and field investigations from 2008 to 2019.We observed that the area with active landslides increased sharply immediately following the earthquake,and then decreased with time;however,the total area of landslides continued to increase from 6.93 km^(2)in 2008 to 10.55 km^(2)in 2019.The active landslides shifted towards lower angles and higher elevations after 2013.Since 2009,the vegetation coverage has been gradually increasing and approaching the coverage present before the earthquake as of 2019.The landslide activity was high and the vegetation recovery rates were rapidly rising during the first five years after the earthquake;the recovery rates then slowed over time.Therefore,we divided the evolution that occurred during the post landslide period into an active period(2008-2013),a self-adjustment period(2013-2026)and a stable period(after 2026).We then proposed a quantitative model to determine the trends of landslide activity rates and NDVI values in the catchment,which indicated that the landslide activities and postseismic vegetation restoration rates in this catchment will return to preseismic levels within approximately two decades.We also analysed the runout volumes of the debris flows after the earthquakes(Diexi and Wenchuan)and the standard deviation of the vegetation coverage and predicted that the debris flow activities will last for an additional 50 years or more.