期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Characteristics of Soluble and Exchangeable Acidity inan Extremely Acidified Acid Sulfate Soil 被引量:4
1
作者 C.Lin M.D.MELVILLE 《Pedosphere》 SCIE CAS CSCD 1999年第4期323-330,共8页
An extremely acidified acid sulfate soil (ASS) was investigated to characterize its soluble and exchangeableacidity. The results showed that soluble acidity of a sample determined by titration with a KOH solutionwas m... An extremely acidified acid sulfate soil (ASS) was investigated to characterize its soluble and exchangeableacidity. The results showed that soluble acidity of a sample determined by titration with a KOH solutionwas much significantly greater than that indicated by pH measured using a PH meter, particularly for theextremely acidic soil samples. This is because the total soluble acidity of the extremely acidic soil sampleswas mainly composed of various soluble Al and Fe species, possibly in forms of Al sulfate complexes (e.g.,AISO4) and ferrous Fe (Fe2+). It is therefore suggested not to use pH alone as an indicator of soluble acidityin ASS, particularly for extremely acidic ASS. It is also likely that AISO4+ actively pericipated in cationexchange reactions. It appears that the possible involvement of this Al sulfate canon in the canon adsorptionhas significant effect on increasing the amount of acidity being adsorbed by the soils. 展开更多
关键词 acid sulfate soils aluminium sulfate complex exchangeable acidity HYDROLYSIS soluble acidity
下载PDF
Influence of Neutral Salts and pH on Exchangeable Acidity of Red Soil and Latosol Colloids 被引量:2
2
作者 ZHOU SHIWEI, ZHANG GANGYA and ZHANG XIAONIAN Institute of Soil Science, the Chinese Academy of Sciences, Nanjing 210008 (China) 《Pedosphere》 SCIE CAS CSCD 2002年第1期81-88,共8页
In the present work, the exchangeable acidity of a red soilcolloid and a latosol colloid at different pH during reacting withfour neutral salts was measured. The results show that theexchangeable acidity increased wit... In the present work, the exchangeable acidity of a red soilcolloid and a latosol colloid at different pH during reacting withfour neutral salts was measured. The results show that theexchangeable acidity increased with increasing amounts of the neutralsalts added, and the relation between them was almost linear. Whenthe amount of the neutral salt added was lower than a certain value,the slop of the line was high, and the slop turned low when theamount exceeded that value, so there was a turning point in eachline. The addition amounts of the neutral salts for the turningpoints were affected by the cation species of the neutral salts, butpH had less effect on them. After the turning points occurred, theexchangeable acidity of the red soil colloid still graduallyincreased with the addition amounts of the neutral salts, but that ofthe latosol colloid did not increase any more. 展开更多
关键词 exchangeable acidity LATOSOL neutral salt PH
下载PDF
Changes in Soil pH and Exchangeable Acidity of Selected Parent Materials as Influenced by Amendments in South East of Nigeria
3
作者 Mabel Ifeoma Onwuka Uzochukwu Victor Ozurumba Ogadimma Simonpeter Nkwocha 《Journal of Geoscience and Environment Protection》 2016年第5期80-88,共9页
Soil chemical degradation caused by acidity is a serious constraint to food production in most parts of the Tropics. It was in the bid to proffer solution to this that the present study was conceived. Anincubation stu... Soil chemical degradation caused by acidity is a serious constraint to food production in most parts of the Tropics. It was in the bid to proffer solution to this that the present study was conceived. Anincubation study was conducted at the laboratory of Soil Science and Meteorology Department of Michael Okpara University of Agriculture Umudike. The aim was to ascertain the effect of amendments namely: Control (no amendment), Biochar, Ash, Lime, Biochar + Poultry Manure, Ash + Poultry Manure and Lime + Poultry Manure, on soil pH and exchangeable acidity of Sandstone, Shale and Alluvium. The rate of application was 1.43 g for the sole amendments and 0.72 g each for the combined amendments to give an equivalent of 2 t/ha. They were applied to 100 g of the soil and replicated three times in a Completely Randomized Design. The incubation study lasted for eighty-four days, the pH and exchangeable acidity were determined at fourteen days intervals. The result obtained revealed that all the treatments increased the soil pH and decreased the exchangeable acidity over the control. In all parent materials, applied Lime and Lime + Pm significantly (p < 0.05) gave the highest pH of 6.6, 6.9 and 7.2 for Shale, Sandstone and Alluvium respectively on the 28<sup>th</sup> day of incubation which, was the time, the maximum pH value was attained. Biochar and Biochar + Pm were considered the appropriate amendments because the pH values they gave were towards neutral, unlike that of Lime and Lime + Pm that were towards alkaline. It is recommended that field trial of this work is conducted. 展开更多
关键词 Parent Materials PH exchangeable acidity and Amendments
下载PDF
Characterization of Acidity in Acid Sulphate Soils of Kerala
4
作者 Beena Viswanathan Nair Indira Manorama Thampatti Kizhekke Covilakom 《Journal of Life Sciences》 2013年第8期907-912,共6页
The acidity characteristics of acid sulphate soils of Kuttanad, Kerala, were studied in detail by collecting surface, profile and subsurface soil samples from 20 locations of six soil series viz., Ambalapuzha, Purakka... The acidity characteristics of acid sulphate soils of Kuttanad, Kerala, were studied in detail by collecting surface, profile and subsurface soil samples from 20 locations of six soil series viz., Ambalapuzha, Purakkad, Thotapally, Thuravur, Kallara and - Thakazhi that belonged to acid sulphate soils. The soils were extremely acidic showing a range of pH (H:O) varying from 2.5 to 5.2. Lowest pH was recorded by Thakazhi series and the highest by Thotapally. The potential acidity of soils ranged from 14.71 cmol.kg-1 to 110.5 cmol-kg1 with Thakazhi series showing the highest value. The contribution of hydrolytic acidity to potential acidity ranged from 70.2% to 97.2%. In all soil series, exchangeable A13+ was greater than exchangeable H~. A significant correlation was observed among pH (KCI), pH (H20) and pH (CaCI2) in all series. 展开更多
关键词 Kuttanad KERALA acid sulphate soils potential acidity exchangeable acidity hydrolytic acidity pH.
下载PDF
Thin-Layer Chromatographic Separation of Amino Acid Enantiomers using Ligand Exchange
5
作者 Qing Ying DENG Zhang ZHANG Jing Yu SU(Depertment of Chemistry, Zhongshan University, Guangzhou 510275) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第2期161-164,共4页
Silica gel thin-layer plates covered with L-arginine and copper acetate were used for the separation of amino acid enantiomers, The chromatographic selectivity and the effects of plate different preparation methods, s... Silica gel thin-layer plates covered with L-arginine and copper acetate were used for the separation of amino acid enantiomers, The chromatographic selectivity and the effects of plate different preparation methods, sample molecular structure and solvent compositions on resolution performance were also discussed. 展开更多
关键词 Thin-Layer Chromatographic Separation of Amino acid Enantiomers using Ligand Exchange THF
下载PDF
USE OF CATION EXCHANGE RESIN IN SYNTHESIS OF N-SUBSTITUTED-1-AMINOALKANEPHOSPHONATE AND-PHOSPHINIC ACIDS
6
作者 Yue Hua ZHANG Wen Qiang HUANG Ai Ju MEN Bing Lin HE Institute of Polymer Chemistry,Nankai University,Tianjin,300071 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第3期203-204,共2页
Strongly acidic cation exchange resin(1x1,H form)has been successfully used as a catalyst in synthesis of diphenyl N-benzyloxycarbonyl-1-aminobenzylphosphonate, N-benzyloxycarbonyl-1-aminobenzylphenylphosphinic acid a... Strongly acidic cation exchange resin(1x1,H form)has been successfully used as a catalyst in synthesis of diphenyl N-benzyloxycarbonyl-1-aminobenzylphosphonate, N-benzyloxycarbonyl-1-aminobenzylphenylphosphinic acid and N-p-tolylsulfonyl-1-aminobenzyl phenylphosphinic acid in high yields. 展开更多
关键词 CHEN USE OF CATION EXCHANGE RESIN IN SYNTHESIS OF N-SUBSTITUTED-1-AMINOALKANEPHOSPHONATE AND-PHOSPHINIC acidS
下载PDF
Effect of Lanthanum Accumulation on Cation Exchange Capacity and Solution Composition of Red Soil 被引量:6
7
作者 XIE ZUBIN ZHU JIANGUO +1 位作者 CHU HAIYAN CAO ZHIHONG and DENG XIHAI(Institute of Soil Science, the Chinese Academy of Sciences, P.O. Box 821, Naviing 210008 China) 《Pedosphere》 SCIE CAS CSCD 2000年第2期171-176,共6页
Pot and adsorpt ion- exchange experiments were carried out by collecting the soil samples from the surfacelayer (0~15 cm) of red soil at the Ecological Experiment Station of Red Soil, the Chinese Academy of Sciences,i... Pot and adsorpt ion- exchange experiments were carried out by collecting the soil samples from the surfacelayer (0~15 cm) of red soil at the Ecological Experiment Station of Red Soil, the Chinese Academy of Sciences,in Jiangxi Province of China. When concentration of the exogenous La3+ exceeded 400 mg kg-1, therewas less non-exchangeable La3+ than exchangeable La3+ in the soil. Cation exchange capacity of the soilchanged slightly with increasing concentration of the exogenous La3+ in both experiments. However, in theadsorption-exchange experiment, when concentration of the exogenous La3+ was higher than 3Oo mg kg-1 ,exchangeable basic cations decreased significantly, while exchangeable hydrogen and exchangeable aluminumincreased significantly compared with the control treatments. The amounts of base cations (Ca2+ ) Mg2+, K+and Na+) exchanged by La3+ in the supernatant solution increased with the concentration of the exogenousLa3+, especially when concentration of the exogenous La3+ was higher than 50 mg kg-1. 展开更多
关键词 CEC exchangeable acidity LANTHANUM red soil solution composition
下载PDF
Liming and Fertilizer Potentials of Some Underutilized Plant Materials in Southwestern Nigeria
8
作者 Oyeyiola Yetunde Bunmi Ewetola Esther Abosede +1 位作者 Olatunji Olayinka Olakunle Ayanleke Abraham 《Journal of Northeast Agricultural University(English Edition)》 CAS 2017年第3期19-29,共11页
Soil acidification and phosphorus deficiency are a major constraint to crop production in tropical soils. Use of conventional liming materials is associated with some limitations viz: inability to solely improve nitr... Soil acidification and phosphorus deficiency are a major constraint to crop production in tropical soils. Use of conventional liming materials is associated with some limitations viz: inability to solely improve nitrogen and available phosphorus in soils, loss of soil organic carbon and soil aggregate stability. Liming and fertilizer potentials of leaves from three plant materials (Tithonia diversifolia (TL), Imperata cylindrica (SG) and Gliricidia sepium (GL)) widely growing in Ogbomoso, southwest Nigeria, were tested under incubation condition. Each of the plant material was applied at.the rate of 10 t·hm-2 with and without 50% concentration of NPK 15 : 15 : 15-urea mix in 500 g acidic soiL Sole lime applied at 1 t·hm-2, sole NPK 15 : 15 : 15 applied at 60 kg·hm2 mixed with urea at 60 kg N· hm2 and an unamended soil were compared in completely randomized design in three replicates. The treated soils were incubated for 12 weeks. Thereafter, maize seeds were raised in each pot for a period of 3 weeks. Data coUected were subjected to analysis of variance. Regression analysis was used to predict contributions of increased soil pH in plant material treated soils to exchangeable A1, H, dry root weight of maize and available phosphorus. Results indicated that sole plant materials were the order SG〉TL〉GL significantly (P〈0.05) reduced exchangeable acidity compared to unamended and sole NPK. Sole NPK had the highest exchangeable acidity (4.7 cmol·kg-1) compared to unamended soil (3.3 cmol·kg-1) and sole lime (2.7 cmol·kg-1). Application of sole Tithonia diversifolia increased available phosphorus by 214% and 97% compared to unamended and sole NPK treated soils respectively. Sole plant materials increased maize root weight by 33% compared to sole NPK. Increasing soil pH at harvesting in plant material treated soils significantly reduced exchangeable H and A1. Soil pH was responsible for up to 33% and 53% reductions in exchangeable Al and H, respectively. This culminated into up to 22% increases in dry root weight of maize seedling. Present results showed ability of the plant materials tested to ameliorate soil acidity and improved soil available phosphorus. The plant materials should be explored for using as green manure and composting feedstock. It will go a long way to reduce high dosage use of conventional liming and fertilizer materials on acidic nutrient degraded soils. 展开更多
关键词 exchangeable acidity Gliricidia sepium LIMING soil acidity Tithonia
下载PDF
Modified silicon carbide whisker reinforced polybenzimidazole used for high temperature proton exchange membrane 被引量:2
9
作者 Yangben Cai Zhouying Yue +1 位作者 Qianlu Jiang Shiai Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期820-825,共6页
Polybenzimidazole containing ether bond(OPBI) was reinforced with silicon carbide whisker(m Si C) modified by 3-aminopropyltriethoxysilane(KH550), and then doped with phosphoric acid(PA) to obtain OPBI/m Si C/... Polybenzimidazole containing ether bond(OPBI) was reinforced with silicon carbide whisker(m Si C) modified by 3-aminopropyltriethoxysilane(KH550), and then doped with phosphoric acid(PA) to obtain OPBI/m Si C/PA membranes. These OPBI/m Si C/PA membranes have excellent mechanical strength and oxidative stability and can be used for high temperature proton exchange membrane(HT-PEM). The tensile strength of OPBI/m Si C/PA membranes ranges from 27.3 to 36.8 MPa, and it increases at first and then decreases with the increase of m Si C content. The high m Si C content and PA doping level contribute to improving the proton conductivity of membranes. The proton conductivity of PBI/m Si C-10/PA membrane is 27.1 m S cm-1 at 170℃ without humidity, with an increase of 55.7% compared with that of OPBI/PA membrane. These excellent properties make OPBI/m Si C/PA membranes promising membrane materials for HT-PEM applications. 展开更多
关键词 Polybenzimidazole Silicon carbide whisker Phosphoric acid doping Proton exchange membrane Proton conductivity
下载PDF
Soil Acidification of Alfisols as Influenced by Tea Cultivation in Eastern China 被引量:49
10
作者 WANG Hui XU Ren-Kou +1 位作者 WANG Ning LI Xing-Hui 《Pedosphere》 SCIE CAS CSCD 2010年第6期799-806,共8页
Soil acidification is an important process in land degradation around the world as well as in China.Acidification of Alfisols was investigated in the tea gardens with various years of tea cultivation in the eastern Ch... Soil acidification is an important process in land degradation around the world as well as in China.Acidification of Alfisols was investigated in the tea gardens with various years of tea cultivation in the eastern China.Cultivation of tea plants caused soil acidification and soil acidity increased with the increase of tea cultivation period.Soil pH of composite samples from cultivated layers decreased by 1.37,1.62 and 1.85,respectively,after 13,34 and 54 years of tea plantation,as compared to the surface soil obtained from the unused land.Soil acidification rates at early stages of tea cultivation were found to be higher than those at the later stages.The acidification rate for the period of 0-13 years was as high as 4.40 kmol H + ha ?1 year ?1 for the cultivated layer samples.Soil acidification induced the decrease of soil exchangeable base cations and base cation saturation and thus increased the soil exchangeable acidity.Soil acidification also caused the decrease of soil cation exchange capacity,especially for the 54-year-old tea garden.Soil acidification induced by tea plantation also led to the increase of soil exchangeable Al and soluble Al,which was responsible for the Al toxicity to plants. 展开更多
关键词 ALUMINUM base cations cation exchange capacity soil exchangeable acidity tea garden
原文传递
Use of Alkaline Slag and Crop Residue Biochars to Promote Base Saturation and Reduce Acidity of an Acidic Ultisol 被引量:5
11
作者 M.M.MASUD LI Jiu-Yu XU Ren-Kou 《Pedosphere》 SCIE CAS CSCD 2014年第6期791-798,共8页
This investigation was conducted by using alkaline slag and crop straw biochars to reduce acidity of an acidic Ultisol through incubation and pot experiments with lime as a comparison. The soil was amended with differ... This investigation was conducted by using alkaline slag and crop straw biochars to reduce acidity of an acidic Ultisol through incubation and pot experiments with lime as a comparison. The soil was amended with different liming materials: lime(1 g kg-1),alkaline slag(2 and 4 g kg-1), peanut straw biochar(10 and 20 g kg-1), canola straw biochar(10 and 20 g kg-1) and combinations of alkaline slag(2 g kg-1) and biochars(10 g kg-1) in the incubation study. A pot experiment was also conducted to observe the soybean growth responses to the above treatments. The results showed that all the liming materials increased soil p H and decreased soil exchangeable acidity. The higher the rates of alkaline slag, biochars, and alkaline slag combined with biochars, the greater the increase in soil p H and the reduction in soil exchangeable acidity. All the amendments increased the levels of one or more soil exchangeable base cations. The lime treatment increased soil exchangeable Ca2+, the alkaline slag treatment increased exchangeable Ca2+and Mg2+levels, and the biochars and combined applications of alkaline slag with biochars increased soil exchangeable Ca2+, Mg2+and K+and soil available P. The amendments enhanced the uptake of one or more nutrients of N, P, K, Ca and Mg by soybean in the pot experiment. Of the different amendments, the combined application of alkaline slag with crop straw biochars was the best choice for increasing base saturation and reducing soil acidity of the acidic Ultisol. The combined application of alkaline slag with biochars led to the greatest reduction in soil acidity, increased soil Ca, Mg, K and P levels, and enhanced the uptake of Ca, Mg, K and P by soybean plants. 展开更多
关键词 alkaline amendment exchangeable acidity exchangeable base cation soil pH soybean growth
原文传递
Sorption of tylosin and sulfamethazine on solid humic acid 被引量:13
12
作者 Xuetao Guo Bei Tu +3 位作者 Jianhua Ge Chen Yang Xiaomei Song Zhi Dang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第5期208-215,共8页
Tylosin(TYL) and sulfamethazine(SMT) are ionizable and polar antimicrobial compounds,which have seeped into the environment in substantial amounts via fertilizing land with manure or sewage. Sorption of TYL and SM... Tylosin(TYL) and sulfamethazine(SMT) are ionizable and polar antimicrobial compounds,which have seeped into the environment in substantial amounts via fertilizing land with manure or sewage. Sorption of TYL and SMT onto humic acid(HA) may affect their environmental fate. In this study, the sorption of TYL and SMT on HA at different conditions(pH, ionic strength) was investigated. All sorption isotherms fitted well to the Henry and Freundlich models and they were highly nonlinear with values of n between 0.5 and 0.8, which suggested that the HA had high heterogeneity. The sorption of TYL and SMT on HA decreased with increasing p H(2.0–7.5), implying that the primary sorption mechanism could be due to cation exchange interactions between TYL~+/SMT~+ species and the functional groups of HA.Increasing ionic strength resulted in a considerable reduction in the K_d values of TYL and SMT,hinting that interactions between H bonds and π–π EDA might be an important factor in the sorption of TYL and SMT on HA. Results of Fourier transform infrared(FT-IR) and ~13C-nuclear magnetic resonance(NMR) analysis further demonstrated that carboxyl groups and O-alkyl structures in the HA could interact with TYL and SMT via ionic interactions and H bonds,respectively. Overall, this work gives new insights into the mechanisms of sorption of TYL and SMT on HA and hence aids us in assessing the environmental risk of TYL and SMT under diverse conditions. 展开更多
关键词 Sorption Antibiotics Humic acid Cation exchange
原文传递
Adsorption behavior of benzenesulfonic acid by novel weakly basic anion exchange resins 被引量:3
13
作者 Yue Sun Peng Zuo +1 位作者 Junfen Luo Rajendra Prasad Singh 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期40-47,共8页
Two novel weakly basic anion exchange resins(SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene(Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respect... Two novel weakly basic anion exchange resins(SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene(Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respectively. The physicochemical structures of the resulting resins were characterized using Fourier Transform Infrared Spectroscopy and pore size distribution analysis. The adsorption behavior of SZ-1 and SZ-2 for benzenesulfonic acid(BA) was evaluated, and the common commercial weakly basic anion exchanger D301 was also employed for comparison purpose. Adsorption isotherms and influence of solution p H, temperature and coexisting competitive inorganic salts(Na2SO4and Na Cl) on adsorption behavior were investigated and the optimum desorption agent was obtained.Adsorption isotherms of BA were found to be well represented by the Langmuir model.Thermodynamic parameters involving ΔH, ΔG and ΔS were also calculated and the results indicate that adsorption is an exothermic and spontaneous process. Enhanced selectivity of BA sorption over sulfate on the two novel resins was observed by comparison with the commercial anion exchanger D301. The fact that the tested resins loaded with BA can be efficiently regenerated by Na Cl solution indicates the reversible sorption process. From a mechanistic viewpoint, this observation clearly suggests that electrostatic interaction is the predominant adsorption mechanism. Furthermore, results of column tests show that SZ-1possesses a better adsorption property than D301, which reinforces the feasibility of SZ-1for potential industrial application. 展开更多
关键词 Benzenesulfonic acid Weakly basic anion exchange resin Adsorption Desorption
原文传递
Highly active iridium catalyst for hydrogen production from formic acid 被引量:2
14
作者 Ying Du Yang-Bin Shen +3 位作者 Yu-Lu Zhan Fan-Di Ning Liu-Ming Yan Xiao-Chun Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第8期1746-1750,共5页
Formic acid(FA) dehydrogenation has attracted a lot of attentions since it is a convenient method for H_2 production. In this work, we designed a self-supporting fuel cell system, in which H_2 from FA is supplied in... Formic acid(FA) dehydrogenation has attracted a lot of attentions since it is a convenient method for H_2 production. In this work, we designed a self-supporting fuel cell system, in which H_2 from FA is supplied into the fuel cell, and the exhaust heat from the fuel cell supported the FA dehydrogenation. In order to realize the system, we synthesized a highly active and selective homogeneous catalyst Ir Cp*Cl_2 bpym for FA dehydrogenation. The turnover frequency(TOF) of the catalyst for FA dehydrogenation is as high as7150 h^(-1)at 50°C, and is up to 144,000 h^(-1)at 90°C. The catalyst also shows excellent catalytic stability for FA dehydrogenation after several cycles of test. The conversion ratio of FA can achieve 93.2%, and no carbon monoxide is detected in the evolved gas. Therefore, the evolved gas could be applied in the proton exchange membrane fuel cell(PEMFC) directly. This is a potential technology for hydrogen storage and generation. The power density of the PEMFC driven by the evolved gas could approximate to that using pure hydrogen. 展开更多
关键词 Formic acid Hydrogen generation Homogeneous catalyst Catalytic performance Proton exchange membrane fuel cell
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部