Layeredγ-Zirconium phosphate (γ-ZrP) preintercalated with butylamine, tetra (n-butylammonium)hydroxide, dimethylamine respectively, or only ultrasonificated, for preparation of immobilized hemoglobin were investigat...Layeredγ-Zirconium phosphate (γ-ZrP) preintercalated with butylamine, tetra (n-butylammonium)hydroxide, dimethylamine respectively, or only ultrasonificated, for preparation of immobilized hemoglobin were investigated in this report.展开更多
Mg–Al–Fe layered double hydroxides(LDHs) were exfoliated and incorporated in polyether sulfone membranes for the removal of phosphate and fluoride for the first time. The exfoliation methods, coagulation bath, LDH...Mg–Al–Fe layered double hydroxides(LDHs) were exfoliated and incorporated in polyether sulfone membranes for the removal of phosphate and fluoride for the first time. The exfoliation methods, coagulation bath, LDH amount, interfering ions, adsorption isotherm,desorption and reuse of the membranes were investigated. It was found that LDHs could be quickly exfoliated in formamide/N,N-dimethylformamide(DMF) solvent mixtures with sodium carboxymethyl cellulose as a stabilizer. The membranes displayed much higher adsorption capacity for phosphate(5.61 mg/g) and faster adsorption rate than the unexfoliated materials. With increased DMF content in the coagulation bath, the static and dynamic adsorption capacity rose. Interference from Cl-and SO4^(2-)(50 mg/L) on adsorption of phosphates was not apparent. The membranes displayed excellent reusability in dynamic adsorption/desorption. The membranes also showed high adsorption capacity for fluorides(1.61 mg/g).展开更多
α-Zirconium phosphate(Zr(HPO_(4))_(2)⋅H_(2)O,α-ZrP)is an inorganic layered compound.Since the first report of crystallineα-ZrP in 1964,thanks to its simple synthesis and unique physiochemical properties,α-ZrP has ...α-Zirconium phosphate(Zr(HPO_(4))_(2)⋅H_(2)O,α-ZrP)is an inorganic layered compound.Since the first report of crystallineα-ZrP in 1964,thanks to its simple synthesis and unique physiochemical properties,α-ZrP has found widespread application in many fields including mechanical reinforcing,barrier improvement,flame retardancy,anticorrosion,catalysis,environment,energy,and medicine.Because of the ease of exfoliation ofα-ZrP to obtain single-layer nanosheets,as well as its rich surface chemistry thanks to the high density of orderly arranged surface acidic hydroxyl groups,α-ZrP single-layer nanosheets are ideal building blocks for self-assembly or assembly with other chemicals.The assembly ofα-ZrP nanosheets could form a randomly dispersed structure(isotropic),roughly ordered structure(nematic),or highly ordered structure(smectic)within liquid colloids or solid hybrids(including hydrogels).Thanks to the combination of the unique structures and the novel functions of the components,the assembled materials have found a wide verity of applications due to their excellent properties.In this article,the methods to synthesizeα-ZrP,the approaches and mechanisms to exfoliateα-ZrP,and the strategies to assembleα-ZrP nanosheets to form various structures,as well as the applications of the assembled materials are reviewed.The emerging prospects ofα-ZrP nanosheets as a key material in next-generation functional applications are envisioned.展开更多
基金This work was supported by National Nature Science Foundation of China (No.20175003) Project Sponsored by Scientific Foundation for Returned Overseas Chinese Scholars+1 种基金 Ministry of Education and 985 Foundation of Peking University.
文摘Layeredγ-Zirconium phosphate (γ-ZrP) preintercalated with butylamine, tetra (n-butylammonium)hydroxide, dimethylamine respectively, or only ultrasonificated, for preparation of immobilized hemoglobin were investigated in this report.
基金supported by the National Natural Science Foundation of China and Qinghai Qaidam Saline Lake Chemical Science Research Joint Fund (No. U1607109)
文摘Mg–Al–Fe layered double hydroxides(LDHs) were exfoliated and incorporated in polyether sulfone membranes for the removal of phosphate and fluoride for the first time. The exfoliation methods, coagulation bath, LDH amount, interfering ions, adsorption isotherm,desorption and reuse of the membranes were investigated. It was found that LDHs could be quickly exfoliated in formamide/N,N-dimethylformamide(DMF) solvent mixtures with sodium carboxymethyl cellulose as a stabilizer. The membranes displayed much higher adsorption capacity for phosphate(5.61 mg/g) and faster adsorption rate than the unexfoliated materials. With increased DMF content in the coagulation bath, the static and dynamic adsorption capacity rose. Interference from Cl-and SO4^(2-)(50 mg/L) on adsorption of phosphates was not apparent. The membranes displayed excellent reusability in dynamic adsorption/desorption. The membranes also showed high adsorption capacity for fluorides(1.61 mg/g).
基金support from the ACS Petroleum Research Fund (Grant No.57580-ND5).
文摘α-Zirconium phosphate(Zr(HPO_(4))_(2)⋅H_(2)O,α-ZrP)is an inorganic layered compound.Since the first report of crystallineα-ZrP in 1964,thanks to its simple synthesis and unique physiochemical properties,α-ZrP has found widespread application in many fields including mechanical reinforcing,barrier improvement,flame retardancy,anticorrosion,catalysis,environment,energy,and medicine.Because of the ease of exfoliation ofα-ZrP to obtain single-layer nanosheets,as well as its rich surface chemistry thanks to the high density of orderly arranged surface acidic hydroxyl groups,α-ZrP single-layer nanosheets are ideal building blocks for self-assembly or assembly with other chemicals.The assembly ofα-ZrP nanosheets could form a randomly dispersed structure(isotropic),roughly ordered structure(nematic),or highly ordered structure(smectic)within liquid colloids or solid hybrids(including hydrogels).Thanks to the combination of the unique structures and the novel functions of the components,the assembled materials have found a wide verity of applications due to their excellent properties.In this article,the methods to synthesizeα-ZrP,the approaches and mechanisms to exfoliateα-ZrP,and the strategies to assembleα-ZrP nanosheets to form various structures,as well as the applications of the assembled materials are reviewed.The emerging prospects ofα-ZrP nanosheets as a key material in next-generation functional applications are envisioned.