Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engi...Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the two-stroke engine show that auto-ignition can be avoided by increasing the engine speed. The two-stroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition (HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.展开更多
Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy ...Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy on combustion and emission characteristics.Simultaneously,changing the way of exhaust gas recirculation(EGR)gas introduction forms uneven in-cylinder components distribution,and utilizing EGR stratification optimizes the combustion process and allows better emission results.The results show that the split-injection strategy can reduce the NO_(x)emissions and keep smoke opacity low compared with the single injection,but the rise in accumulation mode particles is noticeable.NO_(x)emissions show an upward trend as the injection interval expands,while soot emissions are significantly reduced.The increase in pre-injection proportion causes the apparent low-temperature heat release,and the two-stage heat release can be observed during the process of main combustion heat release.More pre-injection mass makes NO_(x)gradually increase,but smoke opacity reaches the lowest point at 15%pre-injection proportion.EGR stratification can optimize the emission results under the split injection strategy,especially the considerable suppression of accumulation mode particulate emissions.Above all,fuel stratification coupled with EGR stratification is beneficial for further realizing the in-cylinder purification of pollutants.展开更多
The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by...The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by injecting fuel in-cylinder in the negative valve overlap (NVO) period. So, the HCCI combustion which has low NOx and smoke emission is achieved. Cooled external EGR can delay the start of combustion effectively, which is very useful for high cetane fuel (diesel) HCCI, because these fuels can easily self-ignition, which makes the start of combustion more early. External EGR can avoid the knock combustion of HCCI at high load which means that the EGR can expand the high load limit. HCCI maintains low smoke emission at various EGR rate and various load compared with conventional diesel engine because there is no fuel-rich area in cylinder.展开更多
Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an...Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.展开更多
Energy shortage and environmental pollution are becoming more serious,biodiesel is regarded as the most promising alternative fuel for diesel engines due to its environmentally friendly and renewable characteristics.I...Energy shortage and environmental pollution are becoming more serious,biodiesel is regarded as the most promising alternative fuel for diesel engines due to its environmentally friendly and renewable characteristics.In this study,the biodiesel-ethanol blends were used in a diesel engine,and the purpose of the study was to simultaneously control the NOx and soot emissions of the diesel engine by adjusting the injection strategy and EGR rate.A turbocharged,six-cylinder,common rail direct injection(CRDI)engine model was established using GT-Power.The effects of the main-post injection strategy and post injection coupled with exhaust gas recirculation(EGR)on combustion and emission characteristics were investigated at a maximum torque speed and a medium load.The results show that when the main-post injection strategy is employed,the combustion duration of the main injection is shortened with an increase in the main-post injection interval(MPI).When the MPI increased to more than 18℃A,the heat release of post injection could be observed clearly from the curve of the heat release rate,NOx emissions decreased by 5.70%and 7.12%,respectively,and soot emissions decreased by 25.56%and 30.20%,respectively.Moreover,with the increasing post injection quantity,the combustion duration of the main injection shortened,and the peak heat release rate(PHRR)of the post injection increased.When the fuel quantity for the post injection increased from 2 to 6 mg,NOx emissions decreased from 2.33%to 9.80%,and soot emissions decreased from 16.10%to 34.97%.The effect of post injection quantity on emissions was more significant than that of the MPI.In addition,with increasing EGR rate,the ignition delay is prolonged,the peak cylinder pressure,PHRR,peak combustion temperature and NOx emissions decrease,whereas soot emissions increase gradually.Main-post injection can improve the NO-soot trade-off,the optimal EGR rate is 22.86%under a post injection quantity of 4 mg and a MPI of 22℃A.展开更多
To meet increasingly stringent emission standards and lower the brake-specific fuel consumption(BSFC)of marine engines,a collaborative optimization study of exhaust gas recirculation(EGR)and a Miller cycle coupled tur...To meet increasingly stringent emission standards and lower the brake-specific fuel consumption(BSFC)of marine engines,a collaborative optimization study of exhaust gas recirculation(EGR)and a Miller cycle coupled turbocharging system was carried out.In this study,a one-dimensional numerical model of the EGR,Miller cycle,and adjustable two-stage turbocharged engine based on WeiChai 6170 marine diesel engine was established.The particle swarm optimization algorithm was used to achieve multi-input and multi-objective comprehensive optimization,and the effects of EGR-coupled Miller regulation and high-pressure turbine bypass regulation on NO_(x)and BSFC were investigated.The results showed that a medium EGR rate-coupled medium Miller degree was better for the comprehensive optimization of NO_(x)and BSFC.At medium EGR rate and low turbine bypass rates,NO_(x)and BSFC were relatively balanced and acceptable.Finally,an optimal steady-state control strategy under full loads was proposed.With an increase in loads,the optimized turbine bypass rate and Miller degree gradually increased.Compared with the EGRonly system,the optimal system of EGR and Miller cycle coupled turbine bypass reduced NO_(x)by 0.87 g/(kW·h)and BSFC by 17.19 g/(kW·h)at 100%load.Therefore,the EGR and Miller cycle coupled adjustable two-stage turbocharging achieves NO_(x)and BSFC optimization under full loads.展开更多
The rapid depletion of fossil fuel and growing demand necessitates researchers to find alternative fuels which are clean and sustainable. The need for finding renewable, low cost and environmentally friendly fuel reso...The rapid depletion of fossil fuel and growing demand necessitates researchers to find alternative fuels which are clean and sustainable. The need for finding renewable, low cost and environmentally friendly fuel resources can never be understated. An efficient method of generation and storage of hydrogen will enable automotive manufacturers to introduce hydrogen fuelled engine in the market. In this paper, a conventional DI diesel engine was modified to operate as gas engine. The intake manifold of the engine was supplied with hydrogen along with recirculated exhaust gas and air. The injection rates of hydrogen were maintained at three levels with 2 L/min, 4 L/min, 6 L/min and 8 L/min and 10 L/min with an injection pressure of 2 bar. Many of the combustion parameters like heat release rate (HRR), ignition delay, combustion duration, rate of pressure rise (ROPR), cumulative heat release rate (CHR), and cyclic pressure fluctuations were measured. The HRR peak pressure decreased with the increase in EGR rate, while combustion duration increased with the EGR rate. The cyclic pressure variation also increased with the increase in EGR rate.展开更多
The principal objectives of this study were to examine in-cylinder combustion pressure oscillation characteristics of soybean biodiesel in time domain and time-frequency domain,and their influences on the control and ...The principal objectives of this study were to examine in-cylinder combustion pressure oscillation characteristics of soybean biodiesel in time domain and time-frequency domain,and their influences on the control and operational parameters,such as injection timing,exhaust gas recirculation(EGR)ratio,engine load and engine speed.In this study,the combustion pressure oscillation characteristics of biodiesel engine for various injection timing,EGR ratio and engine speed were investigated.The corresponding relation of pressure characteristics in the time domain and frequency domain were obtained.The results showed that the pressure oscillation and peak pressure rise acceleration occurred mainly in the diffusion combustion,and the peak pressure rise rate located in the premixed combustion.The in-cylinder pressure level curve can be divided into three stages.The pressure levels of stage 1,stage 2 and stage 3 represent the peak in-cylinder pressure,the maximum amplitude of pressure rise rate and pressure rise acceleration,respectively.As the injection timing retards,the pressure levels of stage 1 and stage 3 decrease gradually.The pressure level curve of stage 3 with 25°before top dead center(BTDC)is the highest and the oscillation is the most significant.It is worth noting that the location of each stage with various operate conditions is not fixed.At 0.41 MPa indicated mean effective pressure(IMEP),with the increase of EGR rate,the pressure levels of stage 1 and stage 2 decrease gradually.The pressure level curve of stage 3 and the maximum amplitude of pressure rise acceleration with 0%EGR rate are the highest.The oscillation with 0%EGR rate is the most significant at 0.41 MPa IMEP.Compared to 0.41 MPa IMEP,the frequency bands of stage 1 and stage 2 at 1.1 MPa IMEP are relatively low due to the soft combustion in the cylinder.As EGR rate increases,the pressure level of stage 1 decreases,and those of stage 2 and stage 3 increase gradually.The oscillation with 30%EGR rate is the most significant.With the increase of engine speed,the pressure levels of stage 1 and stage 2 decrease,and move to the low frequency.The pressure level in the high frequency domain at 1600 r/min is less than that at 1100 r/min,and the combustion process is smooth.展开更多
以一台高压共轨轻型柴油机为样机,研究废气再循环(exhaust gas recirculation,EGR)和喷油正时协同作用对发动机燃烧特性、燃油消耗率、氮氧化物(NOx)和HC排放的影响。研究结果表明:随着EGR率增大,缸内最大压力有所下降,瞬时放热率峰值...以一台高压共轨轻型柴油机为样机,研究废气再循环(exhaust gas recirculation,EGR)和喷油正时协同作用对发动机燃烧特性、燃油消耗率、氮氧化物(NOx)和HC排放的影响。研究结果表明:随着EGR率增大,缸内最大压力有所下降,瞬时放热率峰值有所减小。随着喷油提前角增加,缸内最大压力增大,瞬时放热率峰值先增大后减小。EGR率与缸内最大压力降幅、瞬时放热率峰值降幅均具有较好的线性关系。随着EGR率的增大和喷油提前角的减小,NOx排放降低,燃油耗增加,而且存在一个最佳的EGR率和喷油提前角的组合区域使HC排放达到最低。为了实现降低NOx排放的同时有效控制燃油消耗率和避免HC排放升高,低负荷时选择高EGR率并结合大喷油提前角的控制策略;中等负荷时选择适中EGR率结合适中喷油提前角的控制策略。展开更多
在一台增压柴油机上通过试验方法研究了废气再循环(exhaust gas recirculation,EGR)对煤直接液化柴油(diesel from direct coal liquefaction,DDCL)和普通石化柴油的燃烧及排放的影响。试验结果表明:DDCL着火滞燃期比柴油长,燃烧持续期...在一台增压柴油机上通过试验方法研究了废气再循环(exhaust gas recirculation,EGR)对煤直接液化柴油(diesel from direct coal liquefaction,DDCL)和普通石化柴油的燃烧及排放的影响。试验结果表明:DDCL着火滞燃期比柴油长,燃烧持续期比柴油短,这种差别在40%EGR率下更明显;相同策略下DDCL燃烧对应的最大压升率高于柴油;当进气氧浓度低于19%后DDCL燃烧产生的NOx排放浓度低于柴油;不论采用何种控制策略,DDCL燃烧产生的碳烟排放浓度总低于柴油,产生的CO和HC排放浓度总高于柴油;柴油机分别燃用DDCL与柴油的油耗率很接近,随着EGR率的增加,DDCL的燃油经济性逐渐差于柴油。展开更多
基金Supported by National Natural Science Foundation and GM Fund (No.50322261).
文摘Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the two-stroke engine show that auto-ignition can be avoided by increasing the engine speed. The two-stroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition (HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.
基金Projects(51476069,51676084)supported by the National Natural Science Foundation of ChinaProject(2019C058-3)supported by the Jilin Provincial Industrial Innovation Special Guidance Fund Project,China+1 种基金Project(20180101059JC)supported by the Jilin Provincial Science and Technology Development Plan Project,ChinaProject(2020C025-2)supported by the Jilin Provincial Specific Project of Industrial Technology Research&Development,China。
文摘Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy on combustion and emission characteristics.Simultaneously,changing the way of exhaust gas recirculation(EGR)gas introduction forms uneven in-cylinder components distribution,and utilizing EGR stratification optimizes the combustion process and allows better emission results.The results show that the split-injection strategy can reduce the NO_(x)emissions and keep smoke opacity low compared with the single injection,but the rise in accumulation mode particles is noticeable.NO_(x)emissions show an upward trend as the injection interval expands,while soot emissions are significantly reduced.The increase in pre-injection proportion causes the apparent low-temperature heat release,and the two-stage heat release can be observed during the process of main combustion heat release.More pre-injection mass makes NO_(x)gradually increase,but smoke opacity reaches the lowest point at 15%pre-injection proportion.EGR stratification can optimize the emission results under the split injection strategy,especially the considerable suppression of accumulation mode particulate emissions.Above all,fuel stratification coupled with EGR stratification is beneficial for further realizing the in-cylinder purification of pollutants.
基金This project is supported by National Basic Research Program of China (973Program, No. 2001CB209205)National Natural Science Foundation ofChina (No. 50406016)
文摘The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by injecting fuel in-cylinder in the negative valve overlap (NVO) period. So, the HCCI combustion which has low NOx and smoke emission is achieved. Cooled external EGR can delay the start of combustion effectively, which is very useful for high cetane fuel (diesel) HCCI, because these fuels can easily self-ignition, which makes the start of combustion more early. External EGR can avoid the knock combustion of HCCI at high load which means that the EGR can expand the high load limit. HCCI maintains low smoke emission at various EGR rate and various load compared with conventional diesel engine because there is no fuel-rich area in cylinder.
文摘Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.
基金funded by the Key Research and Development Program of Shaanxi Province (2021GY-291)the Key Laboratory of Shaanxi Province for Development and Application of New Transportation Energy (CHD300102221508)+1 种基金the Fundamental Research Funds for the Central Universities in Chang'an University (300102220105)the Youth Innovation Team of Shaanxi Universities (Energy Saving and New Energy Automobile)。
文摘Energy shortage and environmental pollution are becoming more serious,biodiesel is regarded as the most promising alternative fuel for diesel engines due to its environmentally friendly and renewable characteristics.In this study,the biodiesel-ethanol blends were used in a diesel engine,and the purpose of the study was to simultaneously control the NOx and soot emissions of the diesel engine by adjusting the injection strategy and EGR rate.A turbocharged,six-cylinder,common rail direct injection(CRDI)engine model was established using GT-Power.The effects of the main-post injection strategy and post injection coupled with exhaust gas recirculation(EGR)on combustion and emission characteristics were investigated at a maximum torque speed and a medium load.The results show that when the main-post injection strategy is employed,the combustion duration of the main injection is shortened with an increase in the main-post injection interval(MPI).When the MPI increased to more than 18℃A,the heat release of post injection could be observed clearly from the curve of the heat release rate,NOx emissions decreased by 5.70%and 7.12%,respectively,and soot emissions decreased by 25.56%and 30.20%,respectively.Moreover,with the increasing post injection quantity,the combustion duration of the main injection shortened,and the peak heat release rate(PHRR)of the post injection increased.When the fuel quantity for the post injection increased from 2 to 6 mg,NOx emissions decreased from 2.33%to 9.80%,and soot emissions decreased from 16.10%to 34.97%.The effect of post injection quantity on emissions was more significant than that of the MPI.In addition,with increasing EGR rate,the ignition delay is prolonged,the peak cylinder pressure,PHRR,peak combustion temperature and NOx emissions decrease,whereas soot emissions increase gradually.Main-post injection can improve the NO-soot trade-off,the optimal EGR rate is 22.86%under a post injection quantity of 4 mg and a MPI of 22℃A.
基金Project(K16011)supported by the Marine Low-speed Engine Project-Phase I,China。
文摘To meet increasingly stringent emission standards and lower the brake-specific fuel consumption(BSFC)of marine engines,a collaborative optimization study of exhaust gas recirculation(EGR)and a Miller cycle coupled turbocharging system was carried out.In this study,a one-dimensional numerical model of the EGR,Miller cycle,and adjustable two-stage turbocharged engine based on WeiChai 6170 marine diesel engine was established.The particle swarm optimization algorithm was used to achieve multi-input and multi-objective comprehensive optimization,and the effects of EGR-coupled Miller regulation and high-pressure turbine bypass regulation on NO_(x)and BSFC were investigated.The results showed that a medium EGR rate-coupled medium Miller degree was better for the comprehensive optimization of NO_(x)and BSFC.At medium EGR rate and low turbine bypass rates,NO_(x)and BSFC were relatively balanced and acceptable.Finally,an optimal steady-state control strategy under full loads was proposed.With an increase in loads,the optimized turbine bypass rate and Miller degree gradually increased.Compared with the EGRonly system,the optimal system of EGR and Miller cycle coupled turbine bypass reduced NO_(x)by 0.87 g/(kW·h)and BSFC by 17.19 g/(kW·h)at 100%load.Therefore,the EGR and Miller cycle coupled adjustable two-stage turbocharging achieves NO_(x)and BSFC optimization under full loads.
文摘The rapid depletion of fossil fuel and growing demand necessitates researchers to find alternative fuels which are clean and sustainable. The need for finding renewable, low cost and environmentally friendly fuel resources can never be understated. An efficient method of generation and storage of hydrogen will enable automotive manufacturers to introduce hydrogen fuelled engine in the market. In this paper, a conventional DI diesel engine was modified to operate as gas engine. The intake manifold of the engine was supplied with hydrogen along with recirculated exhaust gas and air. The injection rates of hydrogen were maintained at three levels with 2 L/min, 4 L/min, 6 L/min and 8 L/min and 10 L/min with an injection pressure of 2 bar. Many of the combustion parameters like heat release rate (HRR), ignition delay, combustion duration, rate of pressure rise (ROPR), cumulative heat release rate (CHR), and cyclic pressure fluctuations were measured. The HRR peak pressure decreased with the increase in EGR rate, while combustion duration increased with the EGR rate. The cyclic pressure variation also increased with the increase in EGR rate.
基金The key scientific research project of Henan Province universities and colleges in 2017(No.17A630066)Public welfare industry(agriculture)special scientific research project-integration and demonstration of crop straw energy efficient and clean utilization technology research and development(No.201503135)The youth core teacher training program of Henan Province universities and colleges in 2016.
文摘The principal objectives of this study were to examine in-cylinder combustion pressure oscillation characteristics of soybean biodiesel in time domain and time-frequency domain,and their influences on the control and operational parameters,such as injection timing,exhaust gas recirculation(EGR)ratio,engine load and engine speed.In this study,the combustion pressure oscillation characteristics of biodiesel engine for various injection timing,EGR ratio and engine speed were investigated.The corresponding relation of pressure characteristics in the time domain and frequency domain were obtained.The results showed that the pressure oscillation and peak pressure rise acceleration occurred mainly in the diffusion combustion,and the peak pressure rise rate located in the premixed combustion.The in-cylinder pressure level curve can be divided into three stages.The pressure levels of stage 1,stage 2 and stage 3 represent the peak in-cylinder pressure,the maximum amplitude of pressure rise rate and pressure rise acceleration,respectively.As the injection timing retards,the pressure levels of stage 1 and stage 3 decrease gradually.The pressure level curve of stage 3 with 25°before top dead center(BTDC)is the highest and the oscillation is the most significant.It is worth noting that the location of each stage with various operate conditions is not fixed.At 0.41 MPa indicated mean effective pressure(IMEP),with the increase of EGR rate,the pressure levels of stage 1 and stage 2 decrease gradually.The pressure level curve of stage 3 and the maximum amplitude of pressure rise acceleration with 0%EGR rate are the highest.The oscillation with 0%EGR rate is the most significant at 0.41 MPa IMEP.Compared to 0.41 MPa IMEP,the frequency bands of stage 1 and stage 2 at 1.1 MPa IMEP are relatively low due to the soft combustion in the cylinder.As EGR rate increases,the pressure level of stage 1 decreases,and those of stage 2 and stage 3 increase gradually.The oscillation with 30%EGR rate is the most significant.With the increase of engine speed,the pressure levels of stage 1 and stage 2 decrease,and move to the low frequency.The pressure level in the high frequency domain at 1600 r/min is less than that at 1100 r/min,and the combustion process is smooth.
文摘以一台高压共轨轻型柴油机为样机,研究废气再循环(exhaust gas recirculation,EGR)和喷油正时协同作用对发动机燃烧特性、燃油消耗率、氮氧化物(NOx)和HC排放的影响。研究结果表明:随着EGR率增大,缸内最大压力有所下降,瞬时放热率峰值有所减小。随着喷油提前角增加,缸内最大压力增大,瞬时放热率峰值先增大后减小。EGR率与缸内最大压力降幅、瞬时放热率峰值降幅均具有较好的线性关系。随着EGR率的增大和喷油提前角的减小,NOx排放降低,燃油耗增加,而且存在一个最佳的EGR率和喷油提前角的组合区域使HC排放达到最低。为了实现降低NOx排放的同时有效控制燃油消耗率和避免HC排放升高,低负荷时选择高EGR率并结合大喷油提前角的控制策略;中等负荷时选择适中EGR率结合适中喷油提前角的控制策略。
文摘在一台增压柴油机上通过试验方法研究了废气再循环(exhaust gas recirculation,EGR)对煤直接液化柴油(diesel from direct coal liquefaction,DDCL)和普通石化柴油的燃烧及排放的影响。试验结果表明:DDCL着火滞燃期比柴油长,燃烧持续期比柴油短,这种差别在40%EGR率下更明显;相同策略下DDCL燃烧对应的最大压升率高于柴油;当进气氧浓度低于19%后DDCL燃烧产生的NOx排放浓度低于柴油;不论采用何种控制策略,DDCL燃烧产生的碳烟排放浓度总低于柴油,产生的CO和HC排放浓度总高于柴油;柴油机分别燃用DDCL与柴油的油耗率很接近,随着EGR率的增加,DDCL的燃油经济性逐渐差于柴油。