In this paper, we discuss the limit cycles of the systemdx/dt=y·[1+(A(x)]oy/dt=(-x+δy+α_1x^2+α_2xy+α_5x^2y)[1+B(x)] (1)where A(x)=sum form i=1 to n(a_ix~), B(x)=sum form j=1 to m(β_jx^j) and 1+B(x)>0. We ...In this paper, we discuss the limit cycles of the systemdx/dt=y·[1+(A(x)]oy/dt=(-x+δy+α_1x^2+α_2xy+α_5x^2y)[1+B(x)] (1)where A(x)=sum form i=1 to n(a_ix~), B(x)=sum form j=1 to m(β_jx^j) and 1+B(x)>0. We prove that (1) possesses at most one limit cycle and give out the necessary and sufficient conditions of existence and uniqueness of limit cycles.展开更多
The matrix equation AXB = E with the constraint PX = sXP is considered, where P is a given Hermitian matrix satisfying P^2 = I and s = ±1. By an eigenvalue decomposition of P, the constrained problem can be equiv...The matrix equation AXB = E with the constraint PX = sXP is considered, where P is a given Hermitian matrix satisfying P^2 = I and s = ±1. By an eigenvalue decomposition of P, the constrained problem can be equivalently transformed to a well-known unconstrained problem of matrix equation whose coefficient matrices contain the corresponding eigenvector, and hence the constrained problem can be solved in terms of the eigenvectors of P. A simple and eigenvector-free formula of the general solutions to the constrained problem by generalized inverses of the coefficient matrices A and B is presented. Moreover, a similar problem of the matrix equation with generalized constraint is discussed.展开更多
In this article, the author studies the iuitial (Dirichlet.) boundary problem for a high field version of the Schroedinger-Poisson equations, which include a nonlinear term in the Poisson equation corresponding to a...In this article, the author studies the iuitial (Dirichlet.) boundary problem for a high field version of the Schroedinger-Poisson equations, which include a nonlinear term in the Poisson equation corresponding to a field-dependent dielectric constant and an effective potential in the Schroedinger equations on the unit cube. h global existence and uniqueness is established for a solution to this problem.展开更多
In this paper, the concept of generalized ω-periodic solution is given for Riccati's equationy'=a(t)y^2+b(t)y+c(t)with perriodic coefficients, the relation between generalized ω-periodicsolutions and the cha...In this paper, the concept of generalized ω-periodic solution is given for Riccati's equationy'=a(t)y^2+b(t)y+c(t)with perriodic coefficients, the relation between generalized ω-periodicsolutions and the characteristic numbers of system x'_1=c(t)x_2, x'_2=-a(t)x_1-b(t)x_2 is indicated, andseveral necessary and sufficient conditions are given using the coefficients. Moreover, in the case of a(t)without zero, the relation between the number of continuous ω-periodic solutions of y'=a(t)y^2+b(t)y+c(t)+δand the parameter δ is given; thus the problem on the existence of continuous ω-periodic.solutions is basically solved.展开更多
In this paper, using Fourier series, we study the problem of the existence of periodic solutionsof a type of periodic neutral differential difference system. Some necessary and sufficient conditionsfor the existence o...In this paper, using Fourier series, we study the problem of the existence of periodic solutionsof a type of periodic neutral differential difference system. Some necessary and sufficient conditionsfor the existence of periodic solutions of a type of neutral functional equation system are obtained,and at the same time, we present a method with formula shows how to find the periodicsolutions.展开更多
This paper is concerned with the problem of absolute stability for a control system with severalexecutive elements. Necessary and sufficient conditions are obtained for the existence of Liapunovfunction of Lur'e f...This paper is concerned with the problem of absolute stability for a control system with severalexecutive elements. Necessary and sufficient conditions are obtained for the existence of Liapunovfunction of Lur'e form with negative semi--definite derivative (i.e. V≤0).展开更多
The author studies the boundary value problems for systems of nonlinear second order differential dmerence equstions and adopts a new-type Nagumo conditinn, in which the controlfunction is a vector-Valued function of ...The author studies the boundary value problems for systems of nonlinear second order differential dmerence equstions and adopts a new-type Nagumo conditinn, in which the controlfunction is a vector-Valued function of several variables and which can guarsntee simultaneously and easily finding a priori bounds of eaCh component of the deriVatives of the solutions.Under this new-type Nagumo condition the existence results of solution are proved by meansof differential inopality technique.展开更多
文摘In this paper, we discuss the limit cycles of the systemdx/dt=y·[1+(A(x)]oy/dt=(-x+δy+α_1x^2+α_2xy+α_5x^2y)[1+B(x)] (1)where A(x)=sum form i=1 to n(a_ix~), B(x)=sum form j=1 to m(β_jx^j) and 1+B(x)>0. We prove that (1) possesses at most one limit cycle and give out the necessary and sufficient conditions of existence and uniqueness of limit cycles.
基金The work of the first author was supported by the Young Talent Foundation of Zhejiang Gongshang University
文摘The matrix equation AXB = E with the constraint PX = sXP is considered, where P is a given Hermitian matrix satisfying P^2 = I and s = ±1. By an eigenvalue decomposition of P, the constrained problem can be equivalently transformed to a well-known unconstrained problem of matrix equation whose coefficient matrices contain the corresponding eigenvector, and hence the constrained problem can be solved in terms of the eigenvectors of P. A simple and eigenvector-free formula of the general solutions to the constrained problem by generalized inverses of the coefficient matrices A and B is presented. Moreover, a similar problem of the matrix equation with generalized constraint is discussed.
文摘In this article, the author studies the iuitial (Dirichlet.) boundary problem for a high field version of the Schroedinger-Poisson equations, which include a nonlinear term in the Poisson equation corresponding to a field-dependent dielectric constant and an effective potential in the Schroedinger equations on the unit cube. h global existence and uniqueness is established for a solution to this problem.
文摘In this paper, the concept of generalized ω-periodic solution is given for Riccati's equationy'=a(t)y^2+b(t)y+c(t)with perriodic coefficients, the relation between generalized ω-periodicsolutions and the characteristic numbers of system x'_1=c(t)x_2, x'_2=-a(t)x_1-b(t)x_2 is indicated, andseveral necessary and sufficient conditions are given using the coefficients. Moreover, in the case of a(t)without zero, the relation between the number of continuous ω-periodic solutions of y'=a(t)y^2+b(t)y+c(t)+δand the parameter δ is given; thus the problem on the existence of continuous ω-periodic.solutions is basically solved.
文摘In this paper, using Fourier series, we study the problem of the existence of periodic solutionsof a type of periodic neutral differential difference system. Some necessary and sufficient conditionsfor the existence of periodic solutions of a type of neutral functional equation system are obtained,and at the same time, we present a method with formula shows how to find the periodicsolutions.
文摘This paper is concerned with the problem of absolute stability for a control system with severalexecutive elements. Necessary and sufficient conditions are obtained for the existence of Liapunovfunction of Lur'e form with negative semi--definite derivative (i.e. V≤0).
文摘The author studies the boundary value problems for systems of nonlinear second order differential dmerence equstions and adopts a new-type Nagumo conditinn, in which the controlfunction is a vector-Valued function of several variables and which can guarsntee simultaneously and easily finding a priori bounds of eaCh component of the deriVatives of the solutions.Under this new-type Nagumo condition the existence results of solution are proved by meansof differential inopality technique.