This paper investigates the trajectory following problem of exoskeleton robots with numerous constraints. However, as a typical nonlinear system with variability and parameter uncertainty, it is difficult to accuratel...This paper investigates the trajectory following problem of exoskeleton robots with numerous constraints. However, as a typical nonlinear system with variability and parameter uncertainty, it is difficult to accurately achieve the trajectory tracking control for exoskeletons. In this paper, we present a robust control of trajectory tracking control based on servo constraints. Firstly, we consider the uncertainties (e.g., modelling errors, initial condition deviations, structural vibrations, and other unknown external disturbances) in the exoskeleton system, which are time-varying and bounded. Secondly, we establish the dynamic model and formulate a close-loop connection between the dynamic model and the real world. Then, the trajectory tracking issue is regarded as a servo constraint problem, and an adaptive robust control with leakage-type adaptive law is proposed with the guaranteed Lyapunov stability. Finally, we conduct numerical simulations to verify the performance of the proposed controller.展开更多
A novel methodology for a walk-assisting balance system of the exoskeleton robot for dis-abled people is presented. The experiment on the walk-assisting balance system is implemented using amini-type ropewalker robot....A novel methodology for a walk-assisting balance system of the exoskeleton robot for dis-abled people is presented. The experiment on the walk-assisting balance system is implemented using amini-type ropewalker robot. The mechanism of the ropewalker robot is designed, its dynamic model isbuilt, and its control system based on PWM is developed. The emulations in Matlab and the results ofexperiments prove that this methodology is effective.展开更多
Lower limb rehabilitation exoskeleton robots integrate sensing, control, and other technologies and exhibit the characteristics of bionics, robotics, information and control science, medicine, and other interdisciplin...Lower limb rehabilitation exoskeleton robots integrate sensing, control, and other technologies and exhibit the characteristics of bionics, robotics, information and control science, medicine, and other interdisciplinary areas. In this review, the typical products and prototypes of lower limb exoskeleton rehabilitation robots are introduced and stateof-the-art techniques are analyzed and summarized. Because the goal of rehabilitation training is to recover patients’ sporting ability to the normal level, studying the human gait is the foundation of lower limb exoskeleton rehabilitation robot research. Therefore, this review critically evaluates research progress in human gait analysis and systematically summarizes developments in the mechanical design and control of lower limb rehabilitation exoskeleton robots. From the performance of typical prototypes, it can be deduced that these robots can be connected to human limbs as wearable forms;further, it is possible to control robot movement at each joint to simulate normal gait and drive the patient’s limb to realize robot-assisted rehabilitation training. Therefore human–robot integration is one of the most important research directions, and in this context, rigid-flexible-soft hybrid structure design, customized personalized gait generation, and multimodal information fusion are three key technologies.展开更多
Recently, the need for exoskeleton robots has been increased due to the advancement of robotic technologies and changes in the concept of how the robots can be utilized in direct contact with human bodies. The robots,...Recently, the need for exoskeleton robots has been increased due to the advancement of robotic technologies and changes in the concept of how the robots can be utilized in direct contact with human bodies. The robots, once only used on the factory floor, are now becoming a part of human bodies, which provides the unprecedented level of muscle power boost and the increase of running speed. If used very carefully, the exoskeleton robots can be also used for patients’ rehabilitation. The exoskeleton robots have many potential application areas;?hence most advanced countries are currently developing various types of exoskeleton robots. Those robots can be classified into two major categories, namely the rigid type and the soft type. Each type has own advantages and disadvantages, while the carrying load capacity and the actuation speed can be quite different. There are also many technical difficulties in order to use the exoskeleton robots in the field. The aim of this study is, therefore, to introduce the trends of exoskeleton robot development in advanced countries, while providing the analysis on the technical merits and downside of robot types. The comparison chart also indicates the major technical directions, in which the future technology will be headed for, such as the improved robot response characteristics by employing advanced sensors and artificial intelligence. The robots are becoming smarter, lighter, and more powerful. It is foreseeable that the wearable robots can be a part of human life in the very near future.展开更多
Whilst industrial robots have been widely used in many industrial sectors, they are predominantly used in a structured factory environment. In recent years, off-site robotics have been investigated extensively and the...Whilst industrial robots have been widely used in many industrial sectors, they are predominantly used in a structured factory environment. In recent years, off-site robotics have been investigated extensively and there are some promising candidates emerging. One such category of robots is exoskeleton robots and this paper provides an in-depth assessment of their suitability in assisting human operators in undertaking manual operations typically found in the construction industry. This work aims to objectively assess the advantages and disadvantages of these two suits and provide recommendations for further improvements of similar system designs. The paper focuses on the passive exoskeleton robotic suits which are commercially available. Three types of activities are designed and a mechatronic methodology has been designed and implemented to capture visual data in order to assess these systems in comparison with normal human operations. The study suggests that these passive suits do reduce the effort required by human operators to undertake the same construction tasks as evidenced by the results from one focused study, though a number of improvements could be made to improve their performance for wider adoption.展开更多
Power-assisted lower limb exoskeleton robot is a wearable intelligent robot system involving mechanics,materials,electronics,control,robotics,and many other fields.The system can use external energy to provide additio...Power-assisted lower limb exoskeleton robot is a wearable intelligent robot system involving mechanics,materials,electronics,control,robotics,and many other fields.The system can use external energy to provide additional power to humans,enhance the function of the human body,and help the wearer to bear weight that is previously unbearable.At the same time,employing reasonable structure design and passive energy storage can also assist in specific actions.First,this paper introduces the research status of power-assisted lower limb exoskeleton robots at home and abroad,and analyzes several typical prototypes in detail.Then,the key technologies such as structure design,driving mode,sensing technology,control method,energy management,and human-machine coupling are summarized,and some common design methods of the exoskeleton robot are summarized and compared.Finally,the existing problems and possible solutions in the research of power-assisted lower limb exoskeleton robots are summarized,and the prospect of future development trend has been analyzed.展开更多
The realisation of a model‐based controller for a robot with a higher degree of freedom requires a substantial amount of computational power.A high‐speed CPU is required to maintain a higher sampling rate.Multicore ...The realisation of a model‐based controller for a robot with a higher degree of freedom requires a substantial amount of computational power.A high‐speed CPU is required to maintain a higher sampling rate.Multicore processors cannot boost the performance or reduce the execution time as the programs are sequentially structured.The neural network is a great tool to convert a sequentially structured program to an equivalent parallel architecture program.In this study,a radial basis function(RBF)neural network is developed for controlling 7 degrees of freedom of the human lower extremity exoskel-eton robot.A realistic friction model is used for modelling joint friction.High trajectory tracking accuracies have been obtained.Evidence of computational efficiency has been observed.The stability analysis of the developed controller is presented.Analysis of variance is used to assess the controller's resilience to parameter variation.To show the effectiveness of the developed controller,a comparative study was performe between the developed RBF network‐based controller and Sliding Mode Controller,Computed Tor-que Controller,Adaptive controller,Linear Quadratic Regulator and Model Reference Computed Torque Controller.展开更多
Robotic exoskeletons have emerged as rehabilitation tool that may ameliorate several of the existing healthrelated consequences after spinal cord injury(SCI).However,evidence to support its clinical application is sti...Robotic exoskeletons have emerged as rehabilitation tool that may ameliorate several of the existing healthrelated consequences after spinal cord injury(SCI).However,evidence to support its clinical application is still lacking considering their prohibitive cost.The current mini-review is written to highlight the main limitations and potential benefits of using exoskeletons in the rehabilitation of persons with SCI.We have recognized two main areas relevant to the design of exoskeletons and to their applications on major health consequences after SCI.The design prospective refers to safety concerns,fitting time and speed of exoskeletons.The health prospective refers to factors similar to body weight,physical activity,pressure injuries and bone health.Clinical trials are currently underway to address some of these limitations and to maximize the benefits in rehabilitation settings.Future directions highlight the need to use exoskeletons in conjunction with other existing and emerging technologies similar to functional electrical stimulation and brain-computer interface to address major limitations.Exoskeletons have the potential to revolutionize rehabilitation following SCI;however,it is still premature to make solid recommendations about their clinical use after SCI.展开更多
After more than half a century of intense efforts, the development of exoskeleton has seen major advances, and several remarkable achievements have been made. Reviews of developing history of exoskeleton are presented...After more than half a century of intense efforts, the development of exoskeleton has seen major advances, and several remarkable achievements have been made. Reviews of developing history of exoskeleton are presented, both in active and passive categories. Major models are introduced, and typical technologies are commented on. Difficulties in control algorithm, driver system, power source, and man-machine interface are discussed. Current researching routes and major developing methods are mapped and critically analyzed, and in the process, some key problems are revealed. First, the exoskeleton is totally different from biped robot, and relative studies based on the robot technologies are considerably incorrect. Second, biomechanical studies are only used to track the motion of the human body, the interaction between human and machines are seldom studied. Third, the traditional developing ways which focused on servo-controlling have inborn deficiency from making portable systems. Research attention should be shifted to the human side of the coupling system, and the human ability to learn and adapt should play a more significant role in the control algorithms Having summarized the major difficulties, possible future works are discussed. It is argued that, since a distinct boundary cannot be drawn in such strong-coupling human-exoskeleton system, the more complex the control system gets, the more difficult it is for the user to learn to use. It is suggested that the exoskeleton should be treated as a simple wearable tool, and downgrading its automatic level may be a change toward a brighter research outlook. This effort at simplification is definitely not easy, as it necessitates theoretical supports from fields such as biomechanics, ergonomics, and bionics.展开更多
We present an approach to control a semi-autonomous robot team remotely under low bandwidth conditions with a single operator. Our approach utilises virtual reality and autonomous robots to create an immersive user in...We present an approach to control a semi-autonomous robot team remotely under low bandwidth conditions with a single operator. Our approach utilises virtual reality and autonomous robots to create an immersive user interface for multi-robot control. This saves a big amount of bandwidth, just because there is no need to transfer a constant steam of camera images. The virtual environment for control only has to be transferred once to the control station and only has to be updated when the map is out of date. Also, the camera position can easily be changed in virtual reality for more overview on the robots situation. The parts of this approach can easily be transferred to applications on earth e.g. for semi-autonomous robots in hazardous areas or under water applications.展开更多
文摘This paper investigates the trajectory following problem of exoskeleton robots with numerous constraints. However, as a typical nonlinear system with variability and parameter uncertainty, it is difficult to accurately achieve the trajectory tracking control for exoskeletons. In this paper, we present a robust control of trajectory tracking control based on servo constraints. Firstly, we consider the uncertainties (e.g., modelling errors, initial condition deviations, structural vibrations, and other unknown external disturbances) in the exoskeleton system, which are time-varying and bounded. Secondly, we establish the dynamic model and formulate a close-loop connection between the dynamic model and the real world. Then, the trajectory tracking issue is regarded as a servo constraint problem, and an adaptive robust control with leakage-type adaptive law is proposed with the guaranteed Lyapunov stability. Finally, we conduct numerical simulations to verify the performance of the proposed controller.
基金This project is supported by National Natural Science Foundation of China (No.60205006) and International Cooperation Foundation (Germany).
文摘A novel methodology for a walk-assisting balance system of the exoskeleton robot for dis-abled people is presented. The experiment on the walk-assisting balance system is implemented using amini-type ropewalker robot. The mechanism of the ropewalker robot is designed, its dynamic model isbuilt, and its control system based on PWM is developed. The emulations in Matlab and the results ofexperiments prove that this methodology is effective.
基金Supported by National Key R&D Program of China(Grant No.2016YFE0105000)National Natural Science Foundation of China(Grant No.91848104)
文摘Lower limb rehabilitation exoskeleton robots integrate sensing, control, and other technologies and exhibit the characteristics of bionics, robotics, information and control science, medicine, and other interdisciplinary areas. In this review, the typical products and prototypes of lower limb exoskeleton rehabilitation robots are introduced and stateof-the-art techniques are analyzed and summarized. Because the goal of rehabilitation training is to recover patients’ sporting ability to the normal level, studying the human gait is the foundation of lower limb exoskeleton rehabilitation robot research. Therefore, this review critically evaluates research progress in human gait analysis and systematically summarizes developments in the mechanical design and control of lower limb rehabilitation exoskeleton robots. From the performance of typical prototypes, it can be deduced that these robots can be connected to human limbs as wearable forms;further, it is possible to control robot movement at each joint to simulate normal gait and drive the patient’s limb to realize robot-assisted rehabilitation training. Therefore human–robot integration is one of the most important research directions, and in this context, rigid-flexible-soft hybrid structure design, customized personalized gait generation, and multimodal information fusion are three key technologies.
文摘Recently, the need for exoskeleton robots has been increased due to the advancement of robotic technologies and changes in the concept of how the robots can be utilized in direct contact with human bodies. The robots, once only used on the factory floor, are now becoming a part of human bodies, which provides the unprecedented level of muscle power boost and the increase of running speed. If used very carefully, the exoskeleton robots can be also used for patients’ rehabilitation. The exoskeleton robots have many potential application areas;?hence most advanced countries are currently developing various types of exoskeleton robots. Those robots can be classified into two major categories, namely the rigid type and the soft type. Each type has own advantages and disadvantages, while the carrying load capacity and the actuation speed can be quite different. There are also many technical difficulties in order to use the exoskeleton robots in the field. The aim of this study is, therefore, to introduce the trends of exoskeleton robot development in advanced countries, while providing the analysis on the technical merits and downside of robot types. The comparison chart also indicates the major technical directions, in which the future technology will be headed for, such as the improved robot response characteristics by employing advanced sensors and artificial intelligence. The robots are becoming smarter, lighter, and more powerful. It is foreseeable that the wearable robots can be a part of human life in the very near future.
文摘Whilst industrial robots have been widely used in many industrial sectors, they are predominantly used in a structured factory environment. In recent years, off-site robotics have been investigated extensively and there are some promising candidates emerging. One such category of robots is exoskeleton robots and this paper provides an in-depth assessment of their suitability in assisting human operators in undertaking manual operations typically found in the construction industry. This work aims to objectively assess the advantages and disadvantages of these two suits and provide recommendations for further improvements of similar system designs. The paper focuses on the passive exoskeleton robotic suits which are commercially available. Three types of activities are designed and a mechatronic methodology has been designed and implemented to capture visual data in order to assess these systems in comparison with normal human operations. The study suggests that these passive suits do reduce the effort required by human operators to undertake the same construction tasks as evidenced by the results from one focused study, though a number of improvements could be made to improve their performance for wider adoption.
基金the National Natural Science Foundation of China(No.52075264)。
文摘Power-assisted lower limb exoskeleton robot is a wearable intelligent robot system involving mechanics,materials,electronics,control,robotics,and many other fields.The system can use external energy to provide additional power to humans,enhance the function of the human body,and help the wearer to bear weight that is previously unbearable.At the same time,employing reasonable structure design and passive energy storage can also assist in specific actions.First,this paper introduces the research status of power-assisted lower limb exoskeleton robots at home and abroad,and analyzes several typical prototypes in detail.Then,the key technologies such as structure design,driving mode,sensing technology,control method,energy management,and human-machine coupling are summarized,and some common design methods of the exoskeleton robot are summarized and compared.Finally,the existing problems and possible solutions in the research of power-assisted lower limb exoskeleton robots are summarized,and the prospect of future development trend has been analyzed.
文摘The realisation of a model‐based controller for a robot with a higher degree of freedom requires a substantial amount of computational power.A high‐speed CPU is required to maintain a higher sampling rate.Multicore processors cannot boost the performance or reduce the execution time as the programs are sequentially structured.The neural network is a great tool to convert a sequentially structured program to an equivalent parallel architecture program.In this study,a radial basis function(RBF)neural network is developed for controlling 7 degrees of freedom of the human lower extremity exoskel-eton robot.A realistic friction model is used for modelling joint friction.High trajectory tracking accuracies have been obtained.Evidence of computational efficiency has been observed.The stability analysis of the developed controller is presented.Analysis of variance is used to assess the controller's resilience to parameter variation.To show the effectiveness of the developed controller,a comparative study was performe between the developed RBF network‐based controller and Sliding Mode Controller,Computed Tor-que Controller,Adaptive controller,Linear Quadratic Regulator and Model Reference Computed Torque Controller.
文摘Robotic exoskeletons have emerged as rehabilitation tool that may ameliorate several of the existing healthrelated consequences after spinal cord injury(SCI).However,evidence to support its clinical application is still lacking considering their prohibitive cost.The current mini-review is written to highlight the main limitations and potential benefits of using exoskeletons in the rehabilitation of persons with SCI.We have recognized two main areas relevant to the design of exoskeletons and to their applications on major health consequences after SCI.The design prospective refers to safety concerns,fitting time and speed of exoskeletons.The health prospective refers to factors similar to body weight,physical activity,pressure injuries and bone health.Clinical trials are currently underway to address some of these limitations and to maximize the benefits in rehabilitation settings.Future directions highlight the need to use exoskeletons in conjunction with other existing and emerging technologies similar to functional electrical stimulation and brain-computer interface to address major limitations.Exoskeletons have the potential to revolutionize rehabilitation following SCI;however,it is still premature to make solid recommendations about their clinical use after SCI.
基金Supported by National Defense Pre-Research Foundation of China
文摘After more than half a century of intense efforts, the development of exoskeleton has seen major advances, and several remarkable achievements have been made. Reviews of developing history of exoskeleton are presented, both in active and passive categories. Major models are introduced, and typical technologies are commented on. Difficulties in control algorithm, driver system, power source, and man-machine interface are discussed. Current researching routes and major developing methods are mapped and critically analyzed, and in the process, some key problems are revealed. First, the exoskeleton is totally different from biped robot, and relative studies based on the robot technologies are considerably incorrect. Second, biomechanical studies are only used to track the motion of the human body, the interaction between human and machines are seldom studied. Third, the traditional developing ways which focused on servo-controlling have inborn deficiency from making portable systems. Research attention should be shifted to the human side of the coupling system, and the human ability to learn and adapt should play a more significant role in the control algorithms Having summarized the major difficulties, possible future works are discussed. It is argued that, since a distinct boundary cannot be drawn in such strong-coupling human-exoskeleton system, the more complex the control system gets, the more difficult it is for the user to learn to use. It is suggested that the exoskeleton should be treated as a simple wearable tool, and downgrading its automatic level may be a change toward a brighter research outlook. This effort at simplification is definitely not easy, as it necessitates theoretical supports from fields such as biomechanics, ergonomics, and bionics.
文摘We present an approach to control a semi-autonomous robot team remotely under low bandwidth conditions with a single operator. Our approach utilises virtual reality and autonomous robots to create an immersive user interface for multi-robot control. This saves a big amount of bandwidth, just because there is no need to transfer a constant steam of camera images. The virtual environment for control only has to be transferred once to the control station and only has to be updated when the map is out of date. Also, the camera position can easily be changed in virtual reality for more overview on the robots situation. The parts of this approach can easily be transferred to applications on earth e.g. for semi-autonomous robots in hazardous areas or under water applications.