The expansibility and mechanical properties of shale are significantly influenced by water-based muds(WBMs);thus,it is necessary to mitigate this effect to avoid borehole instabilities in drilling operation.Potassium ...The expansibility and mechanical properties of shale are significantly influenced by water-based muds(WBMs);thus,it is necessary to mitigate this effect to avoid borehole instabilities in drilling operation.Potassium chloride(KCl)is usually used as inhibitor to reduce hydration of shales.In this study,we investigated the inhibitory efficiency of KCl on shale through a series of experiments,including dynamic linear swelling(DLS)tests and uniaxial compressive strength(UCS)tests,to provide reference for the design of WBMs.These tests were conducted on shale samples soaked in KCl solution for 24,48,72,and 96 h with saline concentrations of 0%,2%,4%,6%,and 8%.Experimental results show that samples with microcracks and bedding fissures have the highest swelling increase and the largest strength reduction after immersion in solution.The swelling potential decreased with increasing KCl concentration.In addition,KCl exhibited a certain inhibitory effect on the weakening of the mechanical properties of samples.An increase in the KCl concentration increases the compressive strength and elastic modulus,and decreases the Poisson's ratio.However,in terms of homogeneous samples,the UCS test results show that exposure to water is weakly related to weakening of the mechanical properties of shale samples.We found that immersing the shale in KCl solution for a longer time decreases the compressive strength,increases the Poisson's ratio,and decreases the elastic modulus.展开更多
Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu...Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.展开更多
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ...The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.展开更多
Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective struc...Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.展开更多
In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, whi...In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.展开更多
The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns ...The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns indicate that deforestation primarily occurs at lower elevations and near the boundaries of forests and settlements,often associated with shifting cultivation by local farmers.This study adopts a process-based modelling approach,specifically the agent-based model,to simulate land changes,particularly farmers'expansion of agricultural land around the Mutis mountain forest.The underlying concept of this agent-based approach is the interaction between the human and environmental systems.Farmers,representing the human system,interact with the land,which represents the environmental system,through land use decision-making mechanisms.The research was conducted in the Community Forest of the Timor Tengah Utara District,one of the sites within the Mutis-Timau Forest Complex with the highest deforestation rate.Land use change simulations were performed using agent-based modelling from 1999 to 2030,considering the socio-economic conditions of farmers,spatial preferences,land use decisions,and natural transitions.The results revealed that the agricultural area increased by 14%under the Business as Usual scenario and 5%under the Reducing Emission from Deforestation and Forest Degradation scenario,compared to the initial agricultural area of 245 hectares.The probability of farmers deciding to extend agricultural activities was positively associated with the number of livestock maintained by farmers and the size of the village area.Conversely,the likelihood of farmers opting for agricultural extensification decreased with an increase in the area of private land and the farmer's age.These findings are crucial for the managers of the Mutis-Timau Forest Complex and other relevant stakeholders,as they aid in arranging actions to combat deforestation,designing proper forest-related policies,and providing support for initiatives such as reducing emissions from deforestation and forest degradation programs or further incentive schemes.展开更多
We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magne...We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.展开更多
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the...BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs.Studies suggested that mesenchymal stem cells(MSCs),necessary for repair and regeneration via transplantation,require doses ranging from 10 to 400 million cells.Furthermore,the limited expansion of MSCs restricts their therapeutic application.AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols.METHODS Human umbilical cord(hUC)tissue derived MSCs were obtained and re-cultured.These cultured cells were subjected to the following evaluation pro-cedures:Immunophenotyping,immunocytochemical staining,trilineage differentiation,population doubling time and number,gene expression markers for proliferation,cell cycle progression,senescence-associatedβ-galactosidase assay,human telomerase reverse transcriptase(hTERT)expression,mycoplasma,cytomegalovirus and endotoxin detection.RESULTS Analysis of pluripotent gene markers Oct4,Sox2,and Nanog in recultured hUC-MSC revealed no significant differences.The immunophenotypic markers CD90,CD73,CD105,CD44,vimentin,CD29,Stro-1,and Lin28 were positively expressed by these recultured expanded MSCs,and were found negative for CD34,CD11b,CD19,CD45,and HLA-DR.The recultured hUC-MSC population continued to expand through passage 15.Proliferative gene expression of Pax6,BMP2,and TGFb1 showed no significant variation between recultured hUC-MSC groups.Nevertheless,a significant increase(P<0.001)in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs.Cellular senescence markers(hTERT expression andβ-galactosidase activity)did not show any negative effect on recultured hUC-MSCs.Additionally,quality control assessments consistently confirmed the absence of mycoplasma,cytomegalovirus,and endotoxin contamination.CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population.This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.展开更多
This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between the...This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.展开更多
The expansion chamber serves as the primary silencing structure within the exhaust pipeline.However,it can also act as a sound-emitting structure when subjected to airflow.This article presents a hybrid method for num...The expansion chamber serves as the primary silencing structure within the exhaust pipeline.However,it can also act as a sound-emitting structure when subjected to airflow.This article presents a hybrid method for numerically simulating and analyzing the unsteady flow and aerodynamic noise in an expansion chamber under the influence of airflow.A fluid simulation model is established,utilizing the Large Eddy Simulation(LES)method to calculate the unsteady flow within the expansion chamber.The simulation results effectively capture the development and changes of the unsteady flow and vorticity inside the cavity,exhibiting a high level of consistency with experimental observations.To calculate the aerodynamic noise sources within the cavity,the flow field results are integrated using the method of integral interpolation and inserted into the acoustic grid.The acoustic analogy method is then employed to determine the aerodynamic noise sources.An acoustic simulation model is established,and the flow noise source is imported into the sound field grid to calculate the sound pressure at the far-field response point.The calculated sound pressure levels and resonance frequencies show good agreement with the experimental results.To address the issue of airflow regeneration noise within the cavity,perforated tubes are selected as a means of noise suppression.An experimental platformfor airflow regeneration noise is constructed,and experimental samples are processed to analyze and verify the noise suppression effect of perforated tube expansion cavities under different airflow velocities.The research findings indicate that the perforated tube expansion cavity can effectively suppress low-frequency aerodynamic noise within the cavity by impeding the formation of strong shear layers.Moreover,the semi-perforated tube expansion cavity demonstrates the most effective suppression of aerodynamic noise.展开更多
In the context of global mean square error concerning the number of random variables in the representation,the Karhunen–Loève(KL)expansion is the optimal series expansion method for random field discretization.T...In the context of global mean square error concerning the number of random variables in the representation,the Karhunen–Loève(KL)expansion is the optimal series expansion method for random field discretization.The computational efficiency and accuracy of the KL expansion are contingent upon the accurate resolution of the Fredholm integral eigenvalue problem(IEVP).The paper proposes an interpolation method based on different interpolation basis functions such as moving least squares(MLS),least squares(LS),and finite element method(FEM)to solve the IEVP.Compared with the Galerkin method based on finite element or Legendre polynomials,the main advantage of the interpolation method is that,in the calculation of eigenvalues and eigenfunctions in one-dimensional random fields,the integral matrix containing covariance function only requires a single integral,which is less than a two-folded integral by the Galerkin method.The effectiveness and computational efficiency of the proposed interpolation method are verified through various one-dimensional examples.Furthermore,based on theKL expansion and polynomial chaos expansion,the stochastic analysis of two-dimensional regular and irregular domains is conducted,and the basis function of the extended finite element method(XFEM)is introduced as the interpolation basis function in two-dimensional irregular domains to solve the IEVP.展开更多
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co...With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.展开更多
Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established man...Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit.展开更多
Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak...Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.展开更多
A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were in...A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments.展开更多
China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgradin...China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgrading achieves the purpose of restraining industrial land expansion remains unanswered.By calculating the industrial land structure index(ILSI)and industrial land expansion scale(ILES),this study analyzed their temporal and spatial distribution characteristics at both regional and city levels from 2007to 2020 in China.Results show that industrial land expansion presents a different trend in the four regions,the ILES in the eastern region is the largest,and the speed of industrial land expansion has declined since 2013,but it has gradually increased since 2016.The ILSI of the eastern and central regions is higher than that of the western and northeastern regions.Furthermore,a spatial Durbin model(SDM)has been established to estimate the spatial effect of industrial structure upgrading on industrial land expansion from 2007 to2020.Notably,industrial structure upgrading has not slowed industrial land expansion.The eastern and western regions require a greater amount of industrial land while upgrading the industrial structure.The improvement of the infrastructure level and international trade level has promoted industrial land expansion.展开更多
Water freezing in rock fractures causes volumetric expansion and fracture development through frost heaving.This study introduces a novel analytical model to investigate how uneven freezing force and surrounding rock ...Water freezing in rock fractures causes volumetric expansion and fracture development through frost heaving.This study introduces a novel analytical model to investigate how uneven freezing force and surrounding rock pressure influence fracture initiation,based on mass conservation,elasticity,and water-ice phase transition principles.A model for rock fracture initiation considering freezing temperature,uneven freezing expansion,in-situ stress,and lateral pressure was proposed based on fracture mechanics.Equations for stress intensity factors were developed and validated using the phase field method.The effects of rock elastic modulus anisotropy and critical fracture energy density on fracture initiation were also discussed.The results show that the values of KI and KII exhibit an upward trend as the freezing temperature,uneven expansion,in-situ stress,and lateral pressure increase.The uneven freezing expansion has the most significant influence on KI and KII values among these parameters.As the uneven freezing expansion coefficient increases to 0.5,the fracture initiation mode shifts from tensile fracture to shear fracture.As the lateral pressure coefficient increases to 1,the fracture initiation mode shifts from tensile fracture to shear fracture.Rock elastic modulus anisotropy causes fractures to propagate in a clockwise direction,forming a'butterfly'pattern.Critical fracture energy density an isotropy causes counterclockwise deviation in propagation direction,resulting in branching paths and an'H'-shaped pattern.展开更多
In this study,the axial swelling strain of red-bed mudstone under different vertical stresses are measured by swell-under-load method,and the microstructure of mudstone after hygroscopic swelling is studied by mercury...In this study,the axial swelling strain of red-bed mudstone under different vertical stresses are measured by swell-under-load method,and the microstructure of mudstone after hygroscopic swelling is studied by mercury intrusion porosimetry(MIP).The weakening coefficient and Weibull distribution function are introduced into the coupling model of mudstone moisture diffusion-swelling deformation-fracture based on finite-discrete element method(FDEM).The weakening effect of moisture on mudstone's mechanical parameters,as well as the heterogeneity of swelling deformation and stress distribution,is considered.The microcrack behavior and energy evolution of mudstone during hygroscopic swelling deformation under different vertical stresses are studied.The results show that the axial swelling strain of mudstone decreases with increase of the vertical stress.At low vertical stresses,moisture absorption in mudstone leads to formation of cracks caused by hydration-induced expansion.Under high vertical stresses,a muddy sealing zone forms on the mudstone surface,preventing further water infiltration.The simulation results of mudstone swelling deformation also demonstrate that it involves both swelling of the mudstone matrix and swelling caused by crack expansion.Notably,crack expansion plays a dominant role in mudstone swelling.With increasing vertical stress,the cracks in mudstone change from tensile cracks to shear cracks,resulting in a significant reduction in the total number of cracks.While the evolution of mudstone kinetic energy shows similarities under different vertical stresses,the evolution of strain energy varies significantly due to the presence of different types of cracks in the mudstone.The findings provide a theoretical basis for understanding the hygroscopic swelling deformation mechanism of red-bed mudstone at various depths.展开更多
The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced ...The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing.展开更多
基金This work was financially supported by the Foundation of National Natural Science Foundation of China(No.511774248 and 51504208)the Open Research Fund of the Key Laboratory of Deep Undergroud Science and Engineering(Sichuan University)Minstry of Education,China and the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,China(No.Z016013).
文摘The expansibility and mechanical properties of shale are significantly influenced by water-based muds(WBMs);thus,it is necessary to mitigate this effect to avoid borehole instabilities in drilling operation.Potassium chloride(KCl)is usually used as inhibitor to reduce hydration of shales.In this study,we investigated the inhibitory efficiency of KCl on shale through a series of experiments,including dynamic linear swelling(DLS)tests and uniaxial compressive strength(UCS)tests,to provide reference for the design of WBMs.These tests were conducted on shale samples soaked in KCl solution for 24,48,72,and 96 h with saline concentrations of 0%,2%,4%,6%,and 8%.Experimental results show that samples with microcracks and bedding fissures have the highest swelling increase and the largest strength reduction after immersion in solution.The swelling potential decreased with increasing KCl concentration.In addition,KCl exhibited a certain inhibitory effect on the weakening of the mechanical properties of samples.An increase in the KCl concentration increases the compressive strength and elastic modulus,and decreases the Poisson's ratio.However,in terms of homogeneous samples,the UCS test results show that exposure to water is weakly related to weakening of the mechanical properties of shale samples.We found that immersing the shale in KCl solution for a longer time decreases the compressive strength,increases the Poisson's ratio,and decreases the elastic modulus.
基金Project supported by the National Natural Science Foundation of China (No. 12072337)。
文摘Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.
基金funding support from the National Key Research and Development Program of China(Grant No.2023YFB2604004)the National Natural Science Foundation of China(Grant No.52108374)the“Taishan”Scholar Program of Shandong Province,China(Grant No.tsqn201909016)。
文摘The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.
基金financially supported by the National Key R&D Program of China (Grant No. 2019YFC1509901)。
文摘Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.
基金supported by the Natural Science Foundation of Qinghai Province, China (No.2021-ZJ940Q)。
文摘In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.
基金funded by the Ministry of Environment and Forestry of the Republic of Indonesia through the research funding assistance program。
文摘The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns indicate that deforestation primarily occurs at lower elevations and near the boundaries of forests and settlements,often associated with shifting cultivation by local farmers.This study adopts a process-based modelling approach,specifically the agent-based model,to simulate land changes,particularly farmers'expansion of agricultural land around the Mutis mountain forest.The underlying concept of this agent-based approach is the interaction between the human and environmental systems.Farmers,representing the human system,interact with the land,which represents the environmental system,through land use decision-making mechanisms.The research was conducted in the Community Forest of the Timor Tengah Utara District,one of the sites within the Mutis-Timau Forest Complex with the highest deforestation rate.Land use change simulations were performed using agent-based modelling from 1999 to 2030,considering the socio-economic conditions of farmers,spatial preferences,land use decisions,and natural transitions.The results revealed that the agricultural area increased by 14%under the Business as Usual scenario and 5%under the Reducing Emission from Deforestation and Forest Degradation scenario,compared to the initial agricultural area of 245 hectares.The probability of farmers deciding to extend agricultural activities was positively associated with the number of livestock maintained by farmers and the size of the village area.Conversely,the likelihood of farmers opting for agricultural extensification decreased with an increase in the area of private land and the farmer's age.These findings are crucial for the managers of the Mutis-Timau Forest Complex and other relevant stakeholders,as they aid in arranging actions to combat deforestation,designing proper forest-related policies,and providing support for initiatives such as reducing emissions from deforestation and forest degradation programs or further incentive schemes.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFA1607403,2021YFA1600201,and 2022YFA1602603)the Natural Science Foundation of China (Grant Nos.U19A2093,U2032214,and U2032163)+5 种基金the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP 001)the Youth Innovation Promotion Association of CAS (Grant No.2021117)the Natural Science Foundation of Anhui Province (No.1908085QA15)the HFIPS Director’s Fund (Grant No.YZJJQY202304)the CASHIPS Director’s Fund (Grant No.YZJJ2022QN36)supported by the High Magnetic Field Laboratory of Anhui Province。
文摘We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.
基金Supported by Higher Education Commission,Islamabad,Pakistan grant,No.20-17590/NRPU/R&D/HEC/20212021.
文摘BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs.Studies suggested that mesenchymal stem cells(MSCs),necessary for repair and regeneration via transplantation,require doses ranging from 10 to 400 million cells.Furthermore,the limited expansion of MSCs restricts their therapeutic application.AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols.METHODS Human umbilical cord(hUC)tissue derived MSCs were obtained and re-cultured.These cultured cells were subjected to the following evaluation pro-cedures:Immunophenotyping,immunocytochemical staining,trilineage differentiation,population doubling time and number,gene expression markers for proliferation,cell cycle progression,senescence-associatedβ-galactosidase assay,human telomerase reverse transcriptase(hTERT)expression,mycoplasma,cytomegalovirus and endotoxin detection.RESULTS Analysis of pluripotent gene markers Oct4,Sox2,and Nanog in recultured hUC-MSC revealed no significant differences.The immunophenotypic markers CD90,CD73,CD105,CD44,vimentin,CD29,Stro-1,and Lin28 were positively expressed by these recultured expanded MSCs,and were found negative for CD34,CD11b,CD19,CD45,and HLA-DR.The recultured hUC-MSC population continued to expand through passage 15.Proliferative gene expression of Pax6,BMP2,and TGFb1 showed no significant variation between recultured hUC-MSC groups.Nevertheless,a significant increase(P<0.001)in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs.Cellular senescence markers(hTERT expression andβ-galactosidase activity)did not show any negative effect on recultured hUC-MSCs.Additionally,quality control assessments consistently confirmed the absence of mycoplasma,cytomegalovirus,and endotoxin contamination.CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population.This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52378365 and 52179109)Jiangsu Province Excellent Postdoctoral Program(Grant No.2023)China Scholarship Council-University of Ottawa Joint Scholarship.
文摘This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.12104153 and 51765017)China Postdoctoral Science Foundation(Grant No.2021M701963)Training Plan for Academic and Technical Leaders of Major Disciplines in Jiangxi Province,China(Grant No.20204BCJL23034).
文摘The expansion chamber serves as the primary silencing structure within the exhaust pipeline.However,it can also act as a sound-emitting structure when subjected to airflow.This article presents a hybrid method for numerically simulating and analyzing the unsteady flow and aerodynamic noise in an expansion chamber under the influence of airflow.A fluid simulation model is established,utilizing the Large Eddy Simulation(LES)method to calculate the unsteady flow within the expansion chamber.The simulation results effectively capture the development and changes of the unsteady flow and vorticity inside the cavity,exhibiting a high level of consistency with experimental observations.To calculate the aerodynamic noise sources within the cavity,the flow field results are integrated using the method of integral interpolation and inserted into the acoustic grid.The acoustic analogy method is then employed to determine the aerodynamic noise sources.An acoustic simulation model is established,and the flow noise source is imported into the sound field grid to calculate the sound pressure at the far-field response point.The calculated sound pressure levels and resonance frequencies show good agreement with the experimental results.To address the issue of airflow regeneration noise within the cavity,perforated tubes are selected as a means of noise suppression.An experimental platformfor airflow regeneration noise is constructed,and experimental samples are processed to analyze and verify the noise suppression effect of perforated tube expansion cavities under different airflow velocities.The research findings indicate that the perforated tube expansion cavity can effectively suppress low-frequency aerodynamic noise within the cavity by impeding the formation of strong shear layers.Moreover,the semi-perforated tube expansion cavity demonstrates the most effective suppression of aerodynamic noise.
基金The authors gratefully acknowledge the support provided by the Postgraduate Research&Practice Program of Jiangsu Province(Grant No.KYCX18_0526)the Fundamental Research Funds for the Central Universities(Grant No.2018B682X14)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110807).
文摘In the context of global mean square error concerning the number of random variables in the representation,the Karhunen–Loève(KL)expansion is the optimal series expansion method for random field discretization.The computational efficiency and accuracy of the KL expansion are contingent upon the accurate resolution of the Fredholm integral eigenvalue problem(IEVP).The paper proposes an interpolation method based on different interpolation basis functions such as moving least squares(MLS),least squares(LS),and finite element method(FEM)to solve the IEVP.Compared with the Galerkin method based on finite element or Legendre polynomials,the main advantage of the interpolation method is that,in the calculation of eigenvalues and eigenfunctions in one-dimensional random fields,the integral matrix containing covariance function only requires a single integral,which is less than a two-folded integral by the Galerkin method.The effectiveness and computational efficiency of the proposed interpolation method are verified through various one-dimensional examples.Furthermore,based on theKL expansion and polynomial chaos expansion,the stochastic analysis of two-dimensional regular and irregular domains is conducted,and the basis function of the extended finite element method(XFEM)is introduced as the interpolation basis function in two-dimensional irregular domains to solve the IEVP.
基金supported by Science and Technology Project of SGCC(SGSW0000FZGHBJS2200070)。
文摘With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.
基金supported by the projects of China Agriculture Research System of MOF and MARA (Grant No.CARS-29-ZP-7)Outstanding Youth Science and Technology Fund of Henan Academy of Agricultural Sciences (Grant No.2022YQ08)。
文摘Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit.
基金National Natural Science Foundation of China under Grant Nos.52208345,52008124,52268054the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection under Grant No.SKLGP2022K002+1 种基金the Natural Science Foundation of Jiangsu Province under Grant No.BK20210479the Fundamental Research Funds for the Central Universities under Grant No.JUSRP121055。
文摘Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.
文摘A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments.
基金Under the auspices of National Natural Science Foundation of China(No.72074181)National Social Science Foundation of China(No.20CJY023)Innovation Capability Support Program of Shaanxi(No.2021KJXX-12)。
文摘China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgrading achieves the purpose of restraining industrial land expansion remains unanswered.By calculating the industrial land structure index(ILSI)and industrial land expansion scale(ILES),this study analyzed their temporal and spatial distribution characteristics at both regional and city levels from 2007to 2020 in China.Results show that industrial land expansion presents a different trend in the four regions,the ILES in the eastern region is the largest,and the speed of industrial land expansion has declined since 2013,but it has gradually increased since 2016.The ILSI of the eastern and central regions is higher than that of the western and northeastern regions.Furthermore,a spatial Durbin model(SDM)has been established to estimate the spatial effect of industrial structure upgrading on industrial land expansion from 2007 to2020.Notably,industrial structure upgrading has not slowed industrial land expansion.The eastern and western regions require a greater amount of industrial land while upgrading the industrial structure.The improvement of the infrastructure level and international trade level has promoted industrial land expansion.
基金This study was funded by the National Natural Science Foundation of China(No.51978039).
文摘Water freezing in rock fractures causes volumetric expansion and fracture development through frost heaving.This study introduces a novel analytical model to investigate how uneven freezing force and surrounding rock pressure influence fracture initiation,based on mass conservation,elasticity,and water-ice phase transition principles.A model for rock fracture initiation considering freezing temperature,uneven freezing expansion,in-situ stress,and lateral pressure was proposed based on fracture mechanics.Equations for stress intensity factors were developed and validated using the phase field method.The effects of rock elastic modulus anisotropy and critical fracture energy density on fracture initiation were also discussed.The results show that the values of KI and KII exhibit an upward trend as the freezing temperature,uneven expansion,in-situ stress,and lateral pressure increase.The uneven freezing expansion has the most significant influence on KI and KII values among these parameters.As the uneven freezing expansion coefficient increases to 0.5,the fracture initiation mode shifts from tensile fracture to shear fracture.As the lateral pressure coefficient increases to 1,the fracture initiation mode shifts from tensile fracture to shear fracture.Rock elastic modulus anisotropy causes fractures to propagate in a clockwise direction,forming a'butterfly'pattern.Critical fracture energy density an isotropy causes counterclockwise deviation in propagation direction,resulting in branching paths and an'H'-shaped pattern.
基金funded by the National Natural Science Foundation of China(No.42172308)the Youth Innovation Promotion Association CAS(No.2022331).
文摘In this study,the axial swelling strain of red-bed mudstone under different vertical stresses are measured by swell-under-load method,and the microstructure of mudstone after hygroscopic swelling is studied by mercury intrusion porosimetry(MIP).The weakening coefficient and Weibull distribution function are introduced into the coupling model of mudstone moisture diffusion-swelling deformation-fracture based on finite-discrete element method(FDEM).The weakening effect of moisture on mudstone's mechanical parameters,as well as the heterogeneity of swelling deformation and stress distribution,is considered.The microcrack behavior and energy evolution of mudstone during hygroscopic swelling deformation under different vertical stresses are studied.The results show that the axial swelling strain of mudstone decreases with increase of the vertical stress.At low vertical stresses,moisture absorption in mudstone leads to formation of cracks caused by hydration-induced expansion.Under high vertical stresses,a muddy sealing zone forms on the mudstone surface,preventing further water infiltration.The simulation results of mudstone swelling deformation also demonstrate that it involves both swelling of the mudstone matrix and swelling caused by crack expansion.Notably,crack expansion plays a dominant role in mudstone swelling.With increasing vertical stress,the cracks in mudstone change from tensile cracks to shear cracks,resulting in a significant reduction in the total number of cracks.While the evolution of mudstone kinetic energy shows similarities under different vertical stresses,the evolution of strain energy varies significantly due to the presence of different types of cracks in the mudstone.The findings provide a theoretical basis for understanding the hygroscopic swelling deformation mechanism of red-bed mudstone at various depths.
基金the financial support from the National Natural Science Foundation of China(Nos.51572061,51621091,and 51321061)the Heilongjiang Touyan Team Program。
文摘The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing.