期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Characteristics and Driving Forces of Spatial Expansion of Oasis Cities and Towns in Hexi Corridor, Gansu Province, China 被引量:3
1
作者 LIU Hailong SHI Peiji +5 位作者 TONG Huali ZHU Guofeng LIU Haimeng ZHANG Xuebin WEI Wei WANG Xinmin 《Chinese Geographical Science》 SCIE CSCD 2015年第2期250-262,共13页
This paper presents an integrated study of urban spatial expansion in the Hexi Corridor, Gansu Province, China based on TM, ETM remote sensing data in 1987, 1990, 1995, 2000, 2006 and 2011. The study explores the char... This paper presents an integrated study of urban spatial expansion in the Hexi Corridor, Gansu Province, China based on TM, ETM remote sensing data in 1987, 1990, 1995, 2000, 2006 and 2011. The study explores the characteristics of urban spatial expansion and dynamic mechanism by using expansion speed index, expansion intensity index, compact index, fractal dimension, and extended flexibility index. We built the index system of influencing factors of urban spatial expansion by using the grey incidence model. The results showed that urban spatial expansion rate in the Hexi Corridor has been on the upward trend since 1987. Expansion intensity showed an obvious upward trend, however, the upward trend varied in different urban areas. In addition, the urban structure was loose relatively, but the urban compactness was more obvious. The urban spatial form tended to be simple, and the urban land use tended to become more intensive. Urban spatial expansion experienced several stages: padding internally, external expansion and padding internally. The main driving factors of urban spatial expansion are not the urban water resources and the oasis scale, but one or several factors such as economy, traffic, population, resource and national policy. 展开更多
关键词 spatial expansion driving forces oasis cities and towns Hexi Corridor China
下载PDF
Fracture model for predicting concrete cover-cracking induced by steel corrosion based on interface bond state 被引量:1
2
作者 王显利 郑建军 吴智敏 《Journal of Shanghai University(English Edition)》 CAS 2009年第3期219-224,共6页
Time-to-cracking of the concrete cover induced by the steel corrosion is one of the critical problems faced by engineers, operators and asset managers in making strategies for the maintenance and repairs of reinforced... Time-to-cracking of the concrete cover induced by the steel corrosion is one of the critical problems faced by engineers, operators and asset managers in making strategies for the maintenance and repairs of reinforced concrete (RC) structures affected by corrosion. In this paper, a theoretical model for predicting the time-to-cracking is derived by assuming the bond between the steel bar and the concrete as a linear combination of perfectly smooth and bonded. The model takes into account the characteristics of existing exiguous flaws and initial cracks in the concrete before the load acting on RC structures. The validity of the proposed model is prehminarily verified by comparing the obtained results with the available experimental results. A remarkable advantage of the proposed method is its apphcation to the prediction of the service life of RC structures, made of the deformed steel bars as well as the round bars. By determining an experimental constant a, which is related to the interface bond state between the steel bar and the concrete, the service life of RC structures can be predicted using the proposed scheme. Analysis of major factors affecting the time-to-cracking demonstrates that the length of the initial crack affects the service life of RC structures significantly. Moreover, the larger cover thickness and the smaller diameter of the steel bar within a certain range are beneficial to prolonging the time-to-cracking. 展开更多
关键词 reinforced concrete (RC) time-to-cracking service life CORROSION corrosion-induced expansive force
下载PDF
Research on cracking mechanism of the thin shell mould in expendable pattern shell casting during pattern removal process 被引量:3
3
作者 Jiang Wenming Fan Zitian +1 位作者 Liao Defeng Zhao Zhong 《China Foundry》 SCIE CAS 2010年第3期230-235,共6页
Aiming at the cracking phenomenon of the thin shell mould in the expendable pattern shell casting during the pattern removing process, some systemic researches are presented.The influence of the pattern removing metho... Aiming at the cracking phenomenon of the thin shell mould in the expendable pattern shell casting during the pattern removing process, some systemic researches are presented.The influence of the pattern removing method and temperature on the pattern removing were investigated.The shell mould cracking mechanism was analyzed by using thermo-gravimetric analysis (TGA), and combining the temperature field and the volume change of the expanded polystyrene (EPS) foam pattern being tested.The results indicated that the shell mould was not easily cracked when the pattern removing process was carried out with the furnace being heated little by little because of the shell slowly shrinking with dehydration and shell strength gradually increasing.The shell mould was soon destroyed when it was set directly into the furnace at above 400 oC because of the thin shell mould rapidly shrinking and the foam pattern hindering.However, the shell mould had no cracking when it had been preheated for a long time even if the furnace temperature was above 400 oC and the shell was put into the furnace directly.Moreover, when the shell mould was directly set into the furnace at lower temperatures, 250 to 300 ℃, the shell would shrink slowly and the foam pattern would stay at the maximum expansion stage temperature of 100 to 110 ℃ for a long time; and the shell mould would experience an expansion force from the foam pattern for a long time.The expansion force is related to the pattern removing temperature, holding time, foam pattern thickness and density.Therefore, the foam pattern with higher density could make the shell crack. 展开更多
关键词 expendable pattern shell casting pattern removing CRACKING SHRINKAGE expansion force
下载PDF
Anchoring mechanism and application of hydraulic expansion bolts used in soft rock roadway floor heave control 被引量:20
4
作者 Chang Qingliang Zhou Huaqiang +1 位作者 Xie Zhihong Shen Shiping 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期323-328,共6页
Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre... Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway. 展开更多
关键词 Hydraulic expansion bolt Anchoring force Soft rock roadway Floor heave Shed support
下载PDF
Test and application of hydraulic expansion bolts in a roadway under goaf with ultra-close separation 被引量:4
5
作者 Wang Xiangyu Bai Jianbiao +1 位作者 Guo Guanlong Yu Yang 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期839-845,共7页
The roof of a roadway under goal with ultra-close separation consists of thin rock strata and rocks caving in upper goal. Influenced by the mining of the upper coal seam, the roof is loose and broken, and its integ- r... The roof of a roadway under goal with ultra-close separation consists of thin rock strata and rocks caving in upper goal. Influenced by the mining of the upper coal seam, the roof is loose and broken, and its integ- rity is poor. Resin anchored bolts cannot provide an effective anchoring force in such roof conditions. By conducting free expansion tests and field pull-out tests on a hydraulic expansion bolt, this study has ana- lyzed the influencing factors and laws of radial expansion and anchoring force changes in the rod body. This has revealed the anchoring mechanism of such bolts, and has obtained reasonable water injection pressures and suitable drilling diameters (which are 20-25 MPa and 32-35 mm respectively) for the hydraulic expansion bolt (cR28 mm) used in these tests. Based on pull-out tests at different interlayer spacing, the applicability of hydraulic expansion bolts had been verified for controlling the roof of road- ways under goal with ultra-close distance. Combined with the deformation and failure characteristics of the test roadway roof, this paper proposes a united roof-control technology based on the use of hydraulic expansion bolts and advancing intubation for the roof. Engineering practice indicated that the roof of the test roadway did not generate leaking and caving phenomenon, and the amount of roof deformation was controlled to within 150 mm. Maintenance of the roadway roof has been improved significantly, which ensures safe mining in coal seams with ultra-close separation. 展开更多
关键词 Hydraulic expansion bolt Coal seams with ultra-close distance Anchoring force Roadway under goaf
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部