期刊文献+
共找到791篇文章
< 1 2 40 >
每页显示 20 50 100
Kinematic calibration under the expectation maximization framework for exoskeletal inertial motion capture system
1
作者 QIN Weiwei GUO Wenxin +2 位作者 HU Chen LIU Gang SONG Tainian 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期769-779,共11页
This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters ... This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters are calibrated by the traditional calibration method at first. Then, in order to calibrate the parameters affected by the random colored noise, the expectation maximization (EM) algorithm is introduced. Through the use of geometric parameters calibrated by the traditional calibration method, the iterations under the EM framework are decreased and the efficiency of the proposed method on embedded system is improved. The performance of the proposed kinematic calibration method is compared to the traditional calibration method. Furthermore, the feasibility of the proposed method is verified on the EI-MoCap system. The simulation and experiment demonstrate that the motion capture precision is significantly improved by 16.79%and 7.16%respectively in comparison to the traditional calibration method. 展开更多
关键词 human motion capture kinematic calibration EXOSKELETON gyroscopic drift expectation maximization(em)
下载PDF
Studies on unfolding energy spectra of neutrons using maximumlikelihood expectation–maximization method 被引量:3
2
作者 Mehrdad Shahmohammadi Beni D.Krstic +1 位作者 D.Nikezic K.N.Yu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第9期24-33,共10页
Energy spectra of neutrons are important for identification of unknown neutron sources and for determination of the equivalent dose. Although standard energy spectra of neutrons are available in some situations, e.g.,... Energy spectra of neutrons are important for identification of unknown neutron sources and for determination of the equivalent dose. Although standard energy spectra of neutrons are available in some situations, e.g., for some radiotherapy treatment machines, they are unknown in other cases, e.g., for photoneutrons created in radiotherapy rooms and neutrons generated in nuclear reactors. In situations where neutron energy spectra need to be determined, unfolding the required neutron energy spectra using the Bonner sphere spectrometer (BSS) and nested neutron spectrometer (NNS) has been found promising. However, without any prior knowledge on the spectra, the unfolding process has remained a tedious task. In this work, a standalone numerical tool named ‘‘NRUunfold’’ was developed which could satisfactorily unfold neutron spectra for BSS or NNS, or any other systems using similar detection methodology. A generic and versatile algorithm based on maximum-likelihood expectation– maximization method was developed and benchmarked against the widely used STAY’SL algorithm which was based on the least squares method. The present method could output decent results in the absence of precisely calculated initial guess, although it was also remarked that employment of exceptionally bizarre initial spectra could lead to some unreasonable output spectra. The neutron count rates computed using the manufacturer’s response functions were used for sensitivity studies. The present NRUunfold code could be useful for neutron energy spectrum unfolding for BSS or NNS applications in the absence of a precisely calculated initial guess. 展开更多
关键词 NEUTRON spectrometry maximUM-LIKELIHOOD expectationmaximization Nested NEUTRON spectrometer
下载PDF
The study of a neutron spectrum unfolding method based on particle swarm optimization combined with maximum likelihood expectation maximization 被引量:1
3
作者 Hong-Fei Xiao Qing-Xian Zhang +5 位作者 He-Yi Tan Bin Shi Jun Chen Zhi-Qiang Cheng Jian Zhang Rui Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期149-160,共12页
The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In or... The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%. 展开更多
关键词 Particle swarm optimization maximum likelihood expectation maximization Neutron spectrum unfolding Bonner spheres spectrometer Monte Carlo method
下载PDF
Parallel Expectation-Maximization Algorithm for Large Databases
4
作者 黄浩 宋瀚涛 陆玉昌 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期420-424,共5页
A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in ge... A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in generic statistical problems, the EM algorithm has been widely used in many domains. But it often requires significant computational resources. So it is needed to develop more elaborate methods to adapt the databases to a large number of records or large dimensionality. The parallel EM algorithm is based on partial Esteps which has the standard convergence guarantee of EM. The algorithm utilizes fully the advantage of parallel computation. It was confirmed that the algorithm obtains about 2.6 speedups in contrast with the standard EM algorithm through its application to large databases. The running time will decrease near linearly when the number of processors increasing. 展开更多
关键词 expectation-maximization (em algorithm incremental em lazy em parallel em
下载PDF
Integration of Expectation Maximization using Gaussian Mixture Models and Naïve Bayes for Intrusion Detection
5
作者 Loka Raj Ghimire Roshan Chitrakar 《Journal of Computer Science Research》 2021年第2期1-10,共10页
Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique ... Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category. 展开更多
关键词 Anomaly detection Clustering em classification expectation maximization(em) Gaussian mixture model(GMM) GMM classification Intrusion detection Naïve Bayes classification
下载PDF
基于EM-KF算法的微地震信号去噪方法
6
作者 李学贵 张帅 +2 位作者 吴钧 段含旭 王泽鹏 《吉林大学学报(信息科学版)》 CAS 2024年第2期200-209,共10页
针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximizati... 针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximization)算法获取卡尔曼滤波的参数最优解,结合卡尔曼滤波,可以有效地提升微地震信号的信噪比,同时保留有效信号。通过合成和真实数据实验结果表明,与传统的小波滤波和卡尔曼滤波相比,该方法具有更高的效率和更好的精度。 展开更多
关键词 微地震 em算法 卡尔曼滤波 信噪比
下载PDF
基于EM-VB的分布式接收运动目标直接符号检测方法
7
作者 张凯 田瑶 《系统工程与电子技术》 EI CSCD 北大核心 2024年第4期1422-1430,共9页
相比于传统分布式组阵接收采用的参数差异估计、信号校准合成以及符号检测的逐级处理结构,直接利用多个观测信号进行符号检测能够抑制信号间校准精度不佳带来的性能损失问题,但现有方法主要针对收发均静止或收发理想同步的情形。研究了... 相比于传统分布式组阵接收采用的参数差异估计、信号校准合成以及符号检测的逐级处理结构,直接利用多个观测信号进行符号检测能够抑制信号间校准精度不佳带来的性能损失问题,但现有方法主要针对收发均静止或收发理想同步的情形。研究了一种最大似然准则下的分布式接收运动目标直接符号检测方法,首先给出了直接符号检测求解模型,针对模型中多组未知参数的优化问题,推导分析了各参数近似闭式解,采用基于迭代重估的闭环处理结构,利用多个未知参数和信息符号进行联合寻优。仿真实验结果表明,所提方法性能明显优于传统合成处理方法,与现有联合处理结构相比,在观测站数目较多时具有明显优势。 展开更多
关键词 分布式接收 运动目标 符号检测 最大似然 期望最大化
下载PDF
基于EM自注意力残差的图像超分辨率重建网络
8
作者 黄淑英 胡瀚洋 +2 位作者 杨勇 万伟国 吴峥 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期388-397,共10页
基于深度学习的图像超分辨率(SR)重建方法主要通过增加模型的深度来提升图像重建的质量,但同时增加了模型的计算代价,很多网络利用注意力机制来提高特征提取能力,但难以充分学习到不同区域的特征。为此,提出一种基于期望最大化(EM)自注... 基于深度学习的图像超分辨率(SR)重建方法主要通过增加模型的深度来提升图像重建的质量,但同时增加了模型的计算代价,很多网络利用注意力机制来提高特征提取能力,但难以充分学习到不同区域的特征。为此,提出一种基于期望最大化(EM)自注意力残差的图像超分辨率重建网络。该网络通过改进基础残差块,构建特征增强残差块,以更好地复用残差块中所提取的特征。为增加特征信息在空间上的相关性,引入EM自注意力机制,构建EM自注意力残差模块来增强模型中每个模块的特征提取能力,并通过级联EM自注意力残差模块来构建整个模型的特征提取结构。所获得的特征图通过上采样的图像重建模块获得重建的高分辨率图像。将所提方法与主流方法进行实验对比,结果表明:所提方法在5个流行的SR测试集上能够取得较好的主观视觉效果和更优的性能指标。 展开更多
关键词 超分辨率重建 注意力机制 期望最大化 特征增强残差块 em自注意力残差模块
下载PDF
基于PSO和MLEM混合算法的NDP测量反演算法研究
9
作者 李远辉 杨芮 +4 位作者 张庆贤 肖才锦 陈弘杰 肖鸿飞 程志强 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第5期1152-1159,共8页
中子深度剖面(NDP)分析技术是一种无损检测方法,能够同时测量样品中目标核素的浓度与空间信息,已被广泛应用于锂电池、半导体等产业。在NDP分析过程中,由测量能谱反演出目标核素浓度的分布信息是关键步骤。目前NDP测量反演中常用的算法... 中子深度剖面(NDP)分析技术是一种无损检测方法,能够同时测量样品中目标核素的浓度与空间信息,已被广泛应用于锂电池、半导体等产业。在NDP分析过程中,由测量能谱反演出目标核素浓度的分布信息是关键步骤。目前NDP测量反演中常用的算法为最大似然期望最大化(MLEM)算法。针对MLEM算法计算结果易陷入局部最优解的情况,本文提出了粒子群(PSO)与MLEM混合(PSO-MLEM)算法,并通过动态加速因子提高了算法的收敛速度与计算精度。应用PSO-MLEM算法、PSO算法、MLEM算法、奇异值分解求解最小二乘(SVDLS)算法对锂电池中^(6)Li的NDP模拟能谱进行反演,并对反演计算结果进行了评价。结果表明:对比PSO算法,PSO-MLEM算法的收敛效率与计算精度明显提升;对比MLEM算法,PSO-MLEM算法的全局寻优能力有效提升了反演精度,避免了局部最优解的影响;对比SVDLS算法,PSO-MLEM算法的反演精度明显提升。 展开更多
关键词 中子深度剖面分析 粒子群算法 最大似然期望最大化算法 锂电池
下载PDF
基于VBEM的一致受限字典织物图像重构模型
10
作者 陈影柔 吕文涛 +2 位作者 余润泽 郭庆 徐羽贞 《现代纺织技术》 北大核心 2024年第9期117-126,共10页
针对传统稀疏贝叶斯算法中字典列之间较强的相互一致性导致的重构性能下降问题,提出了一种基于变分贝叶斯期望最大化的一致受限字典织物图像重构模型(CCD-VBEM)。考虑织物图像的真实应用场景,采用多层先验的稀疏贝叶斯学习(SBL)模型进... 针对传统稀疏贝叶斯算法中字典列之间较强的相互一致性导致的重构性能下降问题,提出了一种基于变分贝叶斯期望最大化的一致受限字典织物图像重构模型(CCD-VBEM)。考虑织物图像的真实应用场景,采用多层先验的稀疏贝叶斯学习(SBL)模型进行建模,并通过VBEM方法求解后验分布近似值,从而构建SBL-VBEM模型。由于SBL-VBEM模型的重构结果仍然受字典矩阵的相关性影响,因此通过减少字典列之间的相互一致性来改善重构结果。首先,通过S形函数的拓扑结构获得收缩因子;然后,在获取一致受限字典的每次迭代中,利用收缩因子缩小字典矩阵中最大非对角项的邻域间隔;最后,将获取的一致受限字典作为SBL-VBEM模型的输入,获得更有效的重构织物图像。对CCD-VBEM模型在阿里云天池数据集上进行验证,验证结果表明,在不同采样率(0.20~0.40)下,CCD-VBEM模型对织物图像的重构均获得最优性能。 展开更多
关键词 织物图像 重构 一致受限字典 变分贝叶斯期望最大化 收缩因子
下载PDF
Novel method for extraction of ship target with overlaps in SAR image via EM algorithm
11
作者 CAO Rui WANG Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期874-887,共14页
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition... The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method. 展开更多
关键词 expectation maximization(em)algorithm image processing imaging projection plane(IPP) overlapping ship tar-get synthetic aperture radar(SAR)
下载PDF
基于EMA改进的图像语义分割算法
12
作者 杜佳栋 李婷 葛洪伟 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第2期185-194,共10页
针对期望最大化注意(EMA)算法参数与图像的语义关联不足以及缺少对通道间信息关注的问题,本文提出一种双重注意力网络EMA+算法。该算法设计了2个模块:空间注意力模块和通道注意力模块。空间注意力模块以EMA算法为主体架构,在责任估计步... 针对期望最大化注意(EMA)算法参数与图像的语义关联不足以及缺少对通道间信息关注的问题,本文提出一种双重注意力网络EMA+算法。该算法设计了2个模块:空间注意力模块和通道注意力模块。空间注意力模块以EMA算法为主体架构,在责任估计步骤采用特征图作为期望最大化(EM)算法的初始参数,增加参数与特征图语义上的关联。通道注意力模块使用高效通道注意力(ECA),通过使用一维卷积学习通道之间交互信息,避免由于降维操作导致的破坏通道与其权重之间的直接对应关系。EMA+通过融合空间注意力模块和通道注意力模块,显著提高了语义分割任务的性能。实验结果表明,EMA+在PASCAL VOC2012和一些更复杂的数据集上均取得了较EMANet等方法更优的交并比指标,有较好的泛化能力。 展开更多
关键词 深度学习 图像语义分割 期望最大化注意 双重注意力网络 高效通道注意力模块
下载PDF
EM-based detection scheme for differential unitary space-time modulation
13
作者 杜正锋 陈杰 +1 位作者 潘文 高西奇 《Journal of Southeast University(English Edition)》 EI CAS 2007年第4期484-488,共5页
The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is... The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations. 展开更多
关键词 unitary space-time modulation differential detection expectation maximization (em algorithm
下载PDF
Modelling the Survival of Western Honey Bee Apis mellifera and the African Stingless Bee Meliponula ferruginea Using Semiparametric Marginal Proportional Hazards Mixture Cure Model
14
作者 Patience Isiaho Daisy Salifu +1 位作者 Samuel Mwalili Henri E. Z. Tonnang 《Journal of Data Analysis and Information Processing》 2024年第1期24-39,共16页
Classical survival analysis assumes all subjects will experience the event of interest, but in some cases, a portion of the population may never encounter the event. These survival methods further assume independent s... Classical survival analysis assumes all subjects will experience the event of interest, but in some cases, a portion of the population may never encounter the event. These survival methods further assume independent survival times, which is not valid for honey bees, which live in nests. The study introduces a semi-parametric marginal proportional hazards mixture cure (PHMC) model with exchangeable correlation structure, using generalized estimating equations for survival data analysis. The model was tested on clustered right-censored bees survival data with a cured fraction, where two bee species were subjected to different entomopathogens to test the effect of the entomopathogens on the survival of the bee species. The Expectation-Solution algorithm is used to estimate the parameters. The study notes a weak positive association between cure statuses (ρ1=0.0007) and survival times for uncured bees (ρ2=0.0890), emphasizing their importance. The odds of being uncured for A. mellifera is higher than the odds for species M. ferruginea. The bee species, A. mellifera are more susceptible to entomopathogens icipe 7, icipe 20, and icipe 69. The Cox-Snell residuals show that the proposed semiparametric PH model generally fits the data well as compared to model that assume independent correlation structure. Thus, the semi parametric marginal proportional hazards mixture cure is parsimonious model for correlated bees survival data. 展开更多
关键词 Mixture Cure Models Clustered Survival Data Correlation Structure Cox-Snell Residuals em Algorithm expectation-Solution Algorithm
下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
15
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance maximum Likelihood Estimation expectation-maximization Algorithm k-Nearest Neighbor and Mean imputation
下载PDF
基于EM和贝叶斯网络的丢失数据填充算法 被引量:21
16
作者 李宏 阿玛尼 +1 位作者 李平 吴敏 《计算机工程与应用》 CSCD 北大核心 2010年第5期123-125,共3页
实际应用中存在大量的丢失数据的数据集,对丢失数据的处理已成为目前分类领域的研究热点。分析和比较了几种通用的丢失数据填充算法,并提出一种新的基于EM和贝叶斯网络的丢失数据填充算法。算法利用朴素贝叶斯估计出EM算法初值,然后将E... 实际应用中存在大量的丢失数据的数据集,对丢失数据的处理已成为目前分类领域的研究热点。分析和比较了几种通用的丢失数据填充算法,并提出一种新的基于EM和贝叶斯网络的丢失数据填充算法。算法利用朴素贝叶斯估计出EM算法初值,然后将EM和贝叶斯网络结合进行迭代确定最终更新器,同时得到填充后的完整数据集。实验结果表明,与经典填充算法相比,新算法具有更高的分类准确率,且节省了大量开销。 展开更多
关键词 丢失数据填充 参数更新器 最大期望值算法(em) 贝叶斯网络
下载PDF
在小波域中进行图像噪声方差估计的EM方法 被引量:21
17
作者 林哲民 康学雷 张立明 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2001年第3期199-202,共4页
提出一种估计图像噪声的方法 ,该方法用混合高斯概率密度模型拟合图像的小波系数中最高频率子带的直方图 ,用 EM算法估计模型的参数 ,选取其中最小的标准方差作为图像噪声标准方差 .用该方法能准确地估计图像高斯噪声的标准方差 ,尤其... 提出一种估计图像噪声的方法 ,该方法用混合高斯概率密度模型拟合图像的小波系数中最高频率子带的直方图 ,用 EM算法估计模型的参数 ,选取其中最小的标准方差作为图像噪声标准方差 .用该方法能准确地估计图像高斯噪声的标准方差 ,尤其当图像的噪声比较弱时 ,该方法比传统方法更准确 . 展开更多
关键词 小波变换 混合高斯模型 期望最大似然函数算法 图像噪声
下载PDF
EM算法在Wiener过程随机参数的超参数值估计中的应用 被引量:20
18
作者 徐廷学 王浩伟 张鑫 《系统工程与电子技术》 EI CSCD 北大核心 2015年第3期707-712,共6页
Wiener过程广泛用于产品的性能退化建模,为了便于Bayesian统计推断大都采用随机参数的共轭先验分布。针对目前的二步法得到的超参数先验估计值精度不高的问题,研究了最大期望(expectation maximization,EM)算法在Wiener过程超参数先验... Wiener过程广泛用于产品的性能退化建模,为了便于Bayesian统计推断大都采用随机参数的共轭先验分布。针对目前的二步法得到的超参数先验估计值精度不高的问题,研究了最大期望(expectation maximization,EM)算法在Wiener过程超参数先验估计中的应用。EM算法将随机参数作为隐含变量对先验信息进行整体处理,利用随机参数的期望值代替其估计值,通过Expectation和Maximization组成的递归迭代过程寻找超参数的估计值。仿真实验表明,EM算法相比于二步法提高了估计精度,特别是在采样数量较少时EM算法具有较大的精度优势。GaAs激光器实例应用表明EM算法不但具备很好的收敛性而且有良好的工程应用价值。 展开更多
关键词 可靠性 最大期望算法 WIENER过程 共轭先验分布 超参数
下载PDF
Incremental expectation maximization principal component analysis for missing value imputation for coevolving EEG data
19
作者 Sun Hee KIM Hyung Jeong YANG Kam Swee NG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第8期687-697,共11页
Missing values occur in bio-signal processing for various reasons,including technical problems or biological char-acteristics.These missing values are then either simply excluded or substituted with estimated values f... Missing values occur in bio-signal processing for various reasons,including technical problems or biological char-acteristics.These missing values are then either simply excluded or substituted with estimated values for further processing.When the missing signal values are estimated for electroencephalography (EEG) signals,an example where electrical signals arrive quickly and successively,rapid processing of high-speed data is required for immediate decision making.In this study,we propose an incremental expectation maximization principal component analysis (iEMPCA) method that automatically estimates missing values from multivariable EEG time series data without requiring a whole and complete data set.The proposed method solves the problem of a biased model,which inevitably results from simply removing incomplete data rather than estimating them,and thus reduces the loss of information by incorporating missing values in real time.By using an incremental approach,the proposed method alsominimizes memory usage and processing time of continuously arriving data.Experimental results show that the proposed method assigns more accurate missing values than previous methods. 展开更多
关键词 Electroencephalography (EEG) Missing value imputation Hidden pattern discovery expectation maximization Principal component analysis
原文传递
基于分裂EM算法的GMM参数估计 被引量:13
20
作者 钟金琴 辜丽川 +1 位作者 檀结庆 李莹莹 《计算机工程与应用》 CSCD 2012年第34期28-32,59,共6页
期望最大化(Expectation Maximization,EM)算法是一种求参数极大似然估计的迭代算法,常用来估计混合密度分布模型的参数。EM算法的主要问题是参数初始化依赖于先验知识且在迭代过程中容易收敛到局部极大值。提出一种新的基于分裂EM算法... 期望最大化(Expectation Maximization,EM)算法是一种求参数极大似然估计的迭代算法,常用来估计混合密度分布模型的参数。EM算法的主要问题是参数初始化依赖于先验知识且在迭代过程中容易收敛到局部极大值。提出一种新的基于分裂EM算法的GMM参数估计算法,该方法从一个确定的单高斯分布开始,在EM优化过程中逐渐分裂并估计混合分布的参数,解决了参数迭代收敛到局部极值问题。大量的实验表明,与现有的其他参数估计算法相比,算法具有较好的运算效率和估算准确性。 展开更多
关键词 高斯混合模型 期望最大化 参数估计 模式分类
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部