Cultural ancient roads,known in Chinese as gudao,serve as heritage trails that carry historical exchanges across various regions in China.Due to their extensive preservation,wide geographical distribution,diverse them...Cultural ancient roads,known in Chinese as gudao,serve as heritage trails that carry historical exchanges across various regions in China.Due to their extensive preservation,wide geographical distribution,diverse thematic variations,and considerable tourist appeal,these paths have emerged as representative heritage trails,increasingly transforming into a novel tourism product experience that is highly favored by tourists and recognized by government authorities.However,research on ancient roads for tourism in China currently lacks a systematic theoretical framework,as well as relevant policies,regulations,and standards to guide their practical development.Therefore,there is a pressing need to draw upon international best practices and conduct foundational research to develop an experience element system that aligns with the perceptions,behaviors,and consumption characteristics of Chinese tourists,thereby advancing theoretical exploration in this field.This study focuses on the representative Ancient Shu Road as a case study and employs a mixed-method approach that integrates qualitative and quantitative research.It aims to construct a tourist-centric scale for the experience elements of ancient road tourism while analyzing the interactive relationship between these experience elements and tourist needs.This study addresses a significant gap in the development of indicator systems for domestic studies of ancient road tourism experiences.Ultimately,the study establishes a comprehensive scale that encompasses three core categories—trail resources and environment,facilities and services,and modes of tourism activities—along with eight primary dimensions:core resources,surrounding cultural environment,surrounding natural environment,tourism reception facilities and services,infrastructure and support services,information facilities and information services,and outdoor and recreational activities.This scale consists of thirty-two specific items,providing a robust reference for future research endeavors.Additionally,the study proposes specific development strategies related to key mechanisms,spatial configuration,and facility construction to enhance the overall development of ancient road tourism.展开更多
Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the ho...Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner.展开更多
Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform d...Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.展开更多
The laws of influence of different factors have been analyzed in order to enhance the working efficiency and fatigue life of the cleaning element in brush shape of the sugarcane harvester. Based on the principle of or...The laws of influence of different factors have been analyzed in order to enhance the working efficiency and fatigue life of the cleaning element in brush shape of the sugarcane harvester. Based on the principle of orthogonal experiment design, the virtual-orthogonal-experimental analysis for the cleaning element is carried out on the finite element analysis (FEA) software-ANSYS after analyzing the nonlinear structural behavior in the working procedure. The results are analyzed with the overall balancing method, and then the optimal combination is got, which is made up of different levels of different factors. Also the optimal combination of design parameters of the cleaning element received fiom the virtual experimental analysis is conducted an experiment to confirm that the virtual analysis model and results are right, and the effect of factors on the function of the cleaning element is obtained by more analysis and further optimizing.展开更多
The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. Thes...The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. These parameters have important reference value in designing the chassis frame properly and provide a necessary basis for the fault diagnostics of the truck.展开更多
In a fusion reactor,due to high heat flux(HHF) loads,the plasma facing components(PFCs) will suffer severe thermal shock.In this paper,the temperature distribution and thermal-stress field of tungsten armor under ...In a fusion reactor,due to high heat flux(HHF) loads,the plasma facing components(PFCs) will suffer severe thermal shock.In this paper,the temperature distribution and thermal-stress field of tungsten armor under HHF loads were investigated by the method of finite element modeling and simulating.The orthogonal experiment and range analysis were employed to compare the influence degree of four representative factors:steady-state heat flux;thickness of tungsten armor;inner diameter of cooling tube and the coefficient of convection heat transfer(CCHF) of cooling water,on thermal shock behavior tungsten mock-ups,and then get an optimization model to conduct the transient heat flux experiment.The final simulation results indicated that the steady-state heat flux and the thickness of W armor are the main influential factors for the maximum temperature of mock-ups.Furthermore,the influence of transient thermal shock all mainly concentrates on the shallow surface layer of tungsten(about 500 μm) under different transient heat flux(duration 0.5 ms).The results are useful for the structural design and the optimization of tungsten based plasma facing materials for the demonstration reactor(DEMO) or other future reactors.展开更多
文摘Cultural ancient roads,known in Chinese as gudao,serve as heritage trails that carry historical exchanges across various regions in China.Due to their extensive preservation,wide geographical distribution,diverse thematic variations,and considerable tourist appeal,these paths have emerged as representative heritage trails,increasingly transforming into a novel tourism product experience that is highly favored by tourists and recognized by government authorities.However,research on ancient roads for tourism in China currently lacks a systematic theoretical framework,as well as relevant policies,regulations,and standards to guide their practical development.Therefore,there is a pressing need to draw upon international best practices and conduct foundational research to develop an experience element system that aligns with the perceptions,behaviors,and consumption characteristics of Chinese tourists,thereby advancing theoretical exploration in this field.This study focuses on the representative Ancient Shu Road as a case study and employs a mixed-method approach that integrates qualitative and quantitative research.It aims to construct a tourist-centric scale for the experience elements of ancient road tourism while analyzing the interactive relationship between these experience elements and tourist needs.This study addresses a significant gap in the development of indicator systems for domestic studies of ancient road tourism experiences.Ultimately,the study establishes a comprehensive scale that encompasses three core categories—trail resources and environment,facilities and services,and modes of tourism activities—along with eight primary dimensions:core resources,surrounding cultural environment,surrounding natural environment,tourism reception facilities and services,infrastructure and support services,information facilities and information services,and outdoor and recreational activities.This scale consists of thirty-two specific items,providing a robust reference for future research endeavors.Additionally,the study proposes specific development strategies related to key mechanisms,spatial configuration,and facility construction to enhance the overall development of ancient road tourism.
基金National Natural Science Foundation of China No.51905068Natural Science Foundation of Liaoning Province No.2020-HYLH-24The open research fund from the State Key Laboratory of Rolling and Automation,Northeastern University No.2020RALKFKT012。
文摘Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205004,51475003)Beijing Municipal Natural Science Foundation of China(Grant No.3152010)Beijing Municipal Education Committee Science and Technology Program,China(Grant No.KM201510009004)
文摘Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.
基金This project is supported by National Natural Science Foundation of China(No.50365001).
文摘The laws of influence of different factors have been analyzed in order to enhance the working efficiency and fatigue life of the cleaning element in brush shape of the sugarcane harvester. Based on the principle of orthogonal experiment design, the virtual-orthogonal-experimental analysis for the cleaning element is carried out on the finite element analysis (FEA) software-ANSYS after analyzing the nonlinear structural behavior in the working procedure. The results are analyzed with the overall balancing method, and then the optimal combination is got, which is made up of different levels of different factors. Also the optimal combination of design parameters of the cleaning element received fiom the virtual experimental analysis is conducted an experiment to confirm that the virtual analysis model and results are right, and the effect of factors on the function of the cleaning element is obtained by more analysis and further optimizing.
文摘The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. These parameters have important reference value in designing the chassis frame properly and provide a necessary basis for the fault diagnostics of the truck.
基金the financial supports from the ITER-National Magnetic Confinement Fusion Program(Nos.2014 GB123000 and 2010 GB109000)the National Natural Science Foundation of China(No.51172016)
文摘In a fusion reactor,due to high heat flux(HHF) loads,the plasma facing components(PFCs) will suffer severe thermal shock.In this paper,the temperature distribution and thermal-stress field of tungsten armor under HHF loads were investigated by the method of finite element modeling and simulating.The orthogonal experiment and range analysis were employed to compare the influence degree of four representative factors:steady-state heat flux;thickness of tungsten armor;inner diameter of cooling tube and the coefficient of convection heat transfer(CCHF) of cooling water,on thermal shock behavior tungsten mock-ups,and then get an optimization model to conduct the transient heat flux experiment.The final simulation results indicated that the steady-state heat flux and the thickness of W armor are the main influential factors for the maximum temperature of mock-ups.Furthermore,the influence of transient thermal shock all mainly concentrates on the shallow surface layer of tungsten(about 500 μm) under different transient heat flux(duration 0.5 ms).The results are useful for the structural design and the optimization of tungsten based plasma facing materials for the demonstration reactor(DEMO) or other future reactors.