Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has ...Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession.展开更多
With the rapid development of information technology and the increasing complexity of the financial market,the teaching methods and means of the Securities Investment course in universities are facing new challenges a...With the rapid development of information technology and the increasing complexity of the financial market,the teaching methods and means of the Securities Investment course in universities are facing new challenges and opportunities.The purpose of this paper is to discuss the application and construction path of virtual simulation experimental teaching in the Securities Investment course.Firstly,it analyses the problems existing in the teaching of traditional securities investment courses,such as the disconnection between theory and practice and the single teaching mode.In order to solve these problems,this paper puts forward the necessity of introducing virtual simulation experimental teaching and details the specific application path of virtual simulation experimental teaching in the Securities Investment course.展开更多
Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based ...Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.展开更多
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th...Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.展开更多
As critical measures to educate and cultivate people’s morality,“Ideology and Politics of Course”has gradually become the focus in actual undergraduate education research in universities.Targeting the single ideolo...As critical measures to educate and cultivate people’s morality,“Ideology and Politics of Course”has gradually become the focus in actual undergraduate education research in universities.Targeting the single ideological and political education mode and students’lack of interest in experimental courses,this paper,through various links,including pre-class preview,in-class teaching,and after-class data analysis,takes the common emitter single tube amplifier experiment as an example to organically integrate the excavated ideological and political elements with practical operation and carry out teaching case design and practice;realize the improvement of students’learning initiative and problem-analysis ability;and achieve the purpose of cultivating people throughout the whole process and in a comprehensive direction.展开更多
A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments o...A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments of inertia can navigate large height steps. Period-doubling has been observed when the space between steps grows. This period-doubling has been validated by experiments, and the results of experiments were coincident with the simulation.展开更多
Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deforma...Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deformation of rock structures, the measurement of deflection was restricted to just a few discrete points along rock, and the measuring points were limited to the location installed with displacement transducers. We developed a method to monitor the deformation of rock structures using fiber optical Bragg grating strain sensors. The sensors were embedded in rock layers of simulation experiment before the materials were put in. These sensors were then used to monitor the experienced strain with different face advancing distance. The test results indicate that, if properly installed, FBG sensors can survive under severe conditions associated with embedment process and yield accurate measurements of strains response. At the same time, we make comparisons of the data obtained by FBG sensors with those by centesimal gauge. The interest in FBG sensors was motivated by the potential advantages that they can offer more than existing sensing technologies.展开更多
Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carri...Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.展开更多
Counter beam lighting was introduced as well as transverse symmetrical lighting and longitudinal symmetrical lighting.Simulation experiments were carried out by using DIAlux lighting software for the above three light...Counter beam lighting was introduced as well as transverse symmetrical lighting and longitudinal symmetrical lighting.Simulation experiments were carried out by using DIAlux lighting software for the above three lighting methods.The results show that counter beam lighting is more reasonable to be adopted in the tunnel entrance zone because its threshold increment of disability glare is greater.Counter beam lighting can improve the background luminance of the obstacles and lighting efficiency compared with transverse symmetrical lighting and longitudinal symmetrical lighting.Therefore,tunnel lighting energy-saving can be achieved by reducing the road luminance demands and luminaries power.Longitudinal symmetrical lighting is conducive to the large luminaries spacing in the tunnel internal zone;so power consumption can be reduced by decreasing the number of luminaries used.Tunnel walls are unsuitable to pave with smooth or bright material.Installation height of the luminaries has less effect on counter beam lighting.展开更多
In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out...In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out with a self-designed diagenetic simulation system. The experimental materials were modem sediments from dif- ferent sources, and the experiments were conducted under high temperature and high pressure. Results of the exper- iments show a binary function relation between primary porosity and mean size as well as sorting. With increasing overburden pressure during mechanical compaction, the evolution of porosity and permeability can be divided into rapid compaction at an early stage and slow compaction at a late stage, and the dividing pressure value of the two stages is about 12 MPa and the corresponding depth is about 600 m. In the slow compaction stage, there is a good exponential relationship between porosity and overburden pressure, while a good power function relationship exists between permeability and overburden pressure. There is also a good exponential relationship between porosity and permeability. The influence of particle size on sandstone mechanical compaction is mainly reflected in the slowcompaction stage, and the influence of sorting is mainly reflected in the rapid compaction stage. Abnormally high pressure effectively inhibits sandstone mechanical com- paction, and its control on sandstone mechanical com- paction is stronger than that of particle size and sorting. The influence of burial time on sandstone mechanical compaction is mainly in the slow compaction stage, and the porosity reduction caused by compaction is mainly con- trolled by average particle size.展开更多
Two measurement techniques are investigated to characterize photodetector linearity. A model for the two-tone and three-tone photodetector systems is developed to thoroughly investigate the influences of setup compone...Two measurement techniques are investigated to characterize photodetector linearity. A model for the two-tone and three-tone photodetector systems is developed to thoroughly investigate the influences of setup components on the measurement results. We demonstrate that small bias shifts from the quadrature point of the modulator will induce deviation into measurement results of the two-tone system, and the simulation results correspond well to experimental and calculation results.展开更多
An ensemble-based method for the observation system simulation experiment(OSSE)is employed to design optimal observation stations and assess the present observation stations in the northeastern South China Sea(SCS).We...An ensemble-based method for the observation system simulation experiment(OSSE)is employed to design optimal observation stations and assess the present observation stations in the northeastern South China Sea(SCS).We employed the 20-year(1992-2012)sea surface height(SSH)data to design an array to monitor the intraseasonal to interannual variability.The results show that the most key region was found located at the northwest of Luzon Island(LI)where the energetic Luzon cyclonic gyre(LCG)occurs;other key regions include the edge of the LCG,the northwest of the Luzon Strait(LS),and the southwest of Taiwan,China.By contrast,we found that the present observation stations might oversample at the northwest of the LS and undersample at the northwest of LI.In addition,the optimal stations perform better in a larger area than the present stations.In vertical direction,the key layer is located within the upper 200-m depth,of which the surface and subsurface layers are most valuable to the observing system.展开更多
The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity...The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.展开更多
Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different phys...Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different physical processes of the earth's surface-vegetation-atmosphere system more completely. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feas...展开更多
Background Machine learning-based beer bottle-defect detection is a complex technology that runs automatically;however,it consumes considerable memory,is expensive,and poses a certain danger when training novice opera...Background Machine learning-based beer bottle-defect detection is a complex technology that runs automatically;however,it consumes considerable memory,is expensive,and poses a certain danger when training novice operators.Moreover,some topics are difficult to learn from experimental lectures,such as digital image processing and computer vision.However,virtual simulation experiments have been widely used to good effect within education.A virtual simulation of the design and manufacture of a beer bottle-defect detection system will not only help the students to increase their image-processing knowledge,but also improve their ability to solve complex engineering problems and design complex systems.Methods The hardware models for the experiment(camera,light source,conveyor belt,power supply,manipulator,and computer)were built using the 3DS MAX modeling and animation software.The Unreal Engine 4(UE4)game engine was utilized to build a virtual design room,design the interactive operations,and simulate the system operation.Results The results showed that the virtual-simulation system received much better experimental feedback,which facilitated the design and manufacture of a beer bottle-defect detection system.The specialized functions of the functional modules in the detection system,including a basic experimental operation menu,power switch,image shooting,image processing,and manipulator grasping,allowed students(or virtual designers)to easily build a detection system by retrieving basic models from the model library,and creating the beer-bottle transportation,image shooting,image processing,defect detection,and defective-product removal.The virtual simulation experiment was completed with image processing as the main body.Conclusions By mainly focusing on bottle mouth defect detection,the detection system dedicates more attention to the user and the task.With more detailed tasks available,the virtual system will eventually yield much better results as a training tool for image processing education.In addition,a novel visual perception-thinking pedagogical framework enables better comprehension than the traditional lecture-tutorial style.展开更多
A detector for fast neutrons based on a 10 × 10 cm^2 triple gas electron multiplier (GEM) device is developed and tested. A neutron converter, which is a high density polyethylene (HDPE) layer, is combined wi...A detector for fast neutrons based on a 10 × 10 cm^2 triple gas electron multiplier (GEM) device is developed and tested. A neutron converter, which is a high density polyethylene (HDPE) layer, is combined with the triple GEM detector cathode and placed inside the detector, in the path of the incident neutrons. The detector is tested by obtaining the energy deposition spectrum with an Am Be neutron source in the Institute of Modern Physics (IMP) at Lanzhou. In the present work we report the results of the tests and compare them with those of simulations. The transport of fast neutrons and their interactions with the different materials in the detector are simulated with the GEANT4 code, to understand the experimental results. The detector displays a clear response to the incident fast neutrons. However, an unexpected disagreement in the energy dependence of the response between the simulated and measured spectra is observed. The neutron sources used in our simulation include deuterium-tritium (DT, 14 MeV), deuterium-deuterium (DD, 2.45 MeV), and Am Be sources. The simulation results also show that among the secondary particles generated by the incident neutron, the main contributions to the total energy deposition are from recoil protons induced in hydrogen-rich HDPE or Kapton (GEM material), and activation photons induced by neutron interaction with Ar atoms. Their contributions account for 90% of the total energy deposition. In addition, the dependence of neutron deposited energy spectrum on the composition of the gas mixture is presented.展开更多
We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numeri...We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numerical simulation and experimental validation. The distribution characteristics and interaction mechanism of the flow field and electromagnetic field of the ICP wind tunnel are investigated using the multi-field coupling method of flow, electromagnetic, chemical, and thermodynamic field. The accuracy of the numerical simulation is validated by comparing the experimental results with the simulation results. Thereafter, the wind tunnel pressure, air velocity, electron density, Joule heating rate, Lorentz force, and electric field intensity obtained using the simulation are analyzed and discussed. The results indicate that for the 1.2-MW ICP wind tunnel, the maximum values of temperature, pressure, electron number density, and other parameters are observed during coil heating. The influence of the radial Lorentz force on the momentum transfer is stronger than that of the axial Lorentz force. The electron number density at the central axis and the amplitude and position of the Joule heating rate are affected by the radial Lorentz force. Moreover, the plasma in the wind tunnel is constantly in the subsonic flow state, and a strong eddy flow is easily generated at the inlet of the wind tunnel.展开更多
The feasibility of ethanol separation from ethanol-water solution saturated with glucose by gas strippingis showil theoretically and experimentally. The effects of glucose on the saturated vapor pressure of ethanol, a...The feasibility of ethanol separation from ethanol-water solution saturated with glucose by gas strippingis showil theoretically and experimentally. The effects of glucose on the saturated vapor pressure of ethanol, and thatof operating temperature and gas stripping flow rates, K/G, on Stripping result are discussed.展开更多
A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations...A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations with working face advanc- ing was simulated by a new model.The results show that the maximum value of bed separations moved forward gradually along with the working face advancing;the maxi- mum value of bed separations is 0.31~0.50 times of mining thickness.The key strata have a great influence upon surface subsidence during the overburden movement process.The mechanics parameters of new experiment are fitted with results in fields perfectly.展开更多
Based on simulation experiments of a number of scientific research items, the latest progress of experiment method and test technique about equivalent material simulation are introduced. The bevelopment of experiment ...Based on simulation experiments of a number of scientific research items, the latest progress of experiment method and test technique about equivalent material simulation are introduced. The bevelopment of experiment technique makes analogy simulation evolve into quantitative research about support-surrounding rock relationship from qualitative experiment.From this, large scale stereoscopic simulation experiment is developed, which has never appeared in underground pressure research in China. The present mold specification is 3 - 6 m×2. 0 m ×1. 5 m.展开更多
基金Chongqing Institute of Technology’s 2022 Virtual Simulation Experiment“Golden Course”Construction Project“Virtual Simulation Experiment of Urban Overpass Vehicle Passage”2023 Teaching Method Reform and“Information Technology+”Smart Teaching Special Research Project Information Technology Multi-Dimensional Research Results of“Enabling Virtual Simulation Experiment Smart Teaching Reform and Practice”。
文摘Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession.
基金The 2024 Hankou University School-Level Teaching Reform Research Project“Research on the Application of Virtual Simulation Experimental Teaching in the Course of Securities Investment”(Project number:2024JY43)。
文摘With the rapid development of information technology and the increasing complexity of the financial market,the teaching methods and means of the Securities Investment course in universities are facing new challenges and opportunities.The purpose of this paper is to discuss the application and construction path of virtual simulation experimental teaching in the Securities Investment course.Firstly,it analyses the problems existing in the teaching of traditional securities investment courses,such as the disconnection between theory and practice and the single teaching mode.In order to solve these problems,this paper puts forward the necessity of introducing virtual simulation experimental teaching and details the specific application path of virtual simulation experimental teaching in the Securities Investment course.
基金National Innovation and Entrepreneurship Program for College Students(202218213001)Science and Technology Innovation Strategy of Guangdong Province(Science and Technology Innovation Cultivation of University Students 2020329182130C000002).
文摘Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.
基金supported by National Natural Science Foundation(52204050)Sichuan Science and Technology Program(2021ZHCG0013,22ZDYF3009)。
文摘Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.
基金This paper was supported by the 2021 School-Level Education Reform Project of Hainan Tropical Ocean University Fund(RHYjg2021sz03).
文摘As critical measures to educate and cultivate people’s morality,“Ideology and Politics of Course”has gradually become the focus in actual undergraduate education research in universities.Targeting the single ideological and political education mode and students’lack of interest in experimental courses,this paper,through various links,including pre-class preview,in-class teaching,and after-class data analysis,takes the common emitter single tube amplifier experiment as an example to organically integrate the excavated ideological and political elements with practical operation and carry out teaching case design and practice;realize the improvement of students’learning initiative and problem-analysis ability;and achieve the purpose of cultivating people throughout the whole process and in a comprehensive direction.
文摘A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments of inertia can navigate large height steps. Period-doubling has been observed when the space between steps grows. This period-doubling has been validated by experiments, and the results of experiments were coincident with the simulation.
基金National Natural Science Foundation of PRC(50374055)Shaanxi Key Lab of Ground Control(02JS43)
文摘Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deformation of rock structures, the measurement of deflection was restricted to just a few discrete points along rock, and the measuring points were limited to the location installed with displacement transducers. We developed a method to monitor the deformation of rock structures using fiber optical Bragg grating strain sensors. The sensors were embedded in rock layers of simulation experiment before the materials were put in. These sensors were then used to monitor the experienced strain with different face advancing distance. The test results indicate that, if properly installed, FBG sensors can survive under severe conditions associated with embedment process and yield accurate measurements of strains response. At the same time, we make comparisons of the data obtained by FBG sensors with those by centesimal gauge. The interest in FBG sensors was motivated by the potential advantages that they can offer more than existing sensing technologies.
文摘Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.
基金Funded by Key Laboratory of Ministry of Education for Conveyance and Equipment,East China Jiaotong University(No. 09JD09)
文摘Counter beam lighting was introduced as well as transverse symmetrical lighting and longitudinal symmetrical lighting.Simulation experiments were carried out by using DIAlux lighting software for the above three lighting methods.The results show that counter beam lighting is more reasonable to be adopted in the tunnel entrance zone because its threshold increment of disability glare is greater.Counter beam lighting can improve the background luminance of the obstacles and lighting efficiency compared with transverse symmetrical lighting and longitudinal symmetrical lighting.Therefore,tunnel lighting energy-saving can be achieved by reducing the road luminance demands and luminaries power.Longitudinal symmetrical lighting is conducive to the large luminaries spacing in the tunnel internal zone;so power consumption can be reduced by decreasing the number of luminaries used.Tunnel walls are unsuitable to pave with smooth or bright material.Installation height of the luminaries has less effect on counter beam lighting.
基金co-funded by the National Natural Science Foundation of China (Grant No.U1262203)the National Science and Technology Special Grant (Grant No.2011ZX05009003)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.14CX06013A)the Chinese Scholarship Council (No.201406450019)
文摘In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out with a self-designed diagenetic simulation system. The experimental materials were modem sediments from dif- ferent sources, and the experiments were conducted under high temperature and high pressure. Results of the exper- iments show a binary function relation between primary porosity and mean size as well as sorting. With increasing overburden pressure during mechanical compaction, the evolution of porosity and permeability can be divided into rapid compaction at an early stage and slow compaction at a late stage, and the dividing pressure value of the two stages is about 12 MPa and the corresponding depth is about 600 m. In the slow compaction stage, there is a good exponential relationship between porosity and overburden pressure, while a good power function relationship exists between permeability and overburden pressure. There is also a good exponential relationship between porosity and permeability. The influence of particle size on sandstone mechanical compaction is mainly reflected in the slowcompaction stage, and the influence of sorting is mainly reflected in the rapid compaction stage. Abnormally high pressure effectively inhibits sandstone mechanical com- paction, and its control on sandstone mechanical com- paction is stronger than that of particle size and sorting. The influence of burial time on sandstone mechanical compaction is mainly in the slow compaction stage, and the porosity reduction caused by compaction is mainly con- trolled by average particle size.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61574019,61674018 and 61674020the Fund of State Key Laboratory of Information Photonics and Optical Communicationsthe Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20130005130001
文摘Two measurement techniques are investigated to characterize photodetector linearity. A model for the two-tone and three-tone photodetector systems is developed to thoroughly investigate the influences of setup components on the measurement results. We demonstrate that small bias shifts from the quadrature point of the modulator will induce deviation into measurement results of the two-tone system, and the simulation results correspond well to experimental and calculation results.
基金Supported by the National Key Research&Development Plan of China(Nos.2016YFC1401703,2016YFC1401702,2018YFC0309803)the National Natural Science Foundation of China(Nos.41506002,41676010,41476011,41676015,41606026)+1 种基金the Institution of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences(No.ISEE2019ZR0)the Guangzhou Science and Technology Foundation(No.201804010133)。
文摘An ensemble-based method for the observation system simulation experiment(OSSE)is employed to design optimal observation stations and assess the present observation stations in the northeastern South China Sea(SCS).We employed the 20-year(1992-2012)sea surface height(SSH)data to design an array to monitor the intraseasonal to interannual variability.The results show that the most key region was found located at the northwest of Luzon Island(LI)where the energetic Luzon cyclonic gyre(LCG)occurs;other key regions include the edge of the LCG,the northwest of the Luzon Strait(LS),and the southwest of Taiwan,China.By contrast,we found that the present observation stations might oversample at the northwest of the LS and undersample at the northwest of LI.In addition,the optimal stations perform better in a larger area than the present stations.In vertical direction,the key layer is located within the upper 200-m depth,of which the surface and subsurface layers are most valuable to the observing system.
基金supported by National Natural Science Foundation of China(41474115,42174155)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)。
文摘The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.
基金National Natural Science Foundation of China (No. 40275004)State Key Laboratory of Atmosphere Physics and Chemistry
文摘Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different physical processes of the earth's surface-vegetation-atmosphere system more completely. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feas...
基金Project"863":Physical Model-based Dynamic Evolution Technology of a Complex Scene(2015AA016404)the SDUST Excellent Teaching Team Construction Plan.
文摘Background Machine learning-based beer bottle-defect detection is a complex technology that runs automatically;however,it consumes considerable memory,is expensive,and poses a certain danger when training novice operators.Moreover,some topics are difficult to learn from experimental lectures,such as digital image processing and computer vision.However,virtual simulation experiments have been widely used to good effect within education.A virtual simulation of the design and manufacture of a beer bottle-defect detection system will not only help the students to increase their image-processing knowledge,but also improve their ability to solve complex engineering problems and design complex systems.Methods The hardware models for the experiment(camera,light source,conveyor belt,power supply,manipulator,and computer)were built using the 3DS MAX modeling and animation software.The Unreal Engine 4(UE4)game engine was utilized to build a virtual design room,design the interactive operations,and simulate the system operation.Results The results showed that the virtual-simulation system received much better experimental feedback,which facilitated the design and manufacture of a beer bottle-defect detection system.The specialized functions of the functional modules in the detection system,including a basic experimental operation menu,power switch,image shooting,image processing,and manipulator grasping,allowed students(or virtual designers)to easily build a detection system by retrieving basic models from the model library,and creating the beer-bottle transportation,image shooting,image processing,defect detection,and defective-product removal.The virtual simulation experiment was completed with image processing as the main body.Conclusions By mainly focusing on bottle mouth defect detection,the detection system dedicates more attention to the user and the task.With more detailed tasks available,the virtual system will eventually yield much better results as a training tool for image processing education.In addition,a novel visual perception-thinking pedagogical framework enables better comprehension than the traditional lecture-tutorial style.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11135002,11305232 and 11175076the Foundation of China Spallation Neutron Source:Study and Development of the High-performance and Low-angle Detector
文摘A detector for fast neutrons based on a 10 × 10 cm^2 triple gas electron multiplier (GEM) device is developed and tested. A neutron converter, which is a high density polyethylene (HDPE) layer, is combined with the triple GEM detector cathode and placed inside the detector, in the path of the incident neutrons. The detector is tested by obtaining the energy deposition spectrum with an Am Be neutron source in the Institute of Modern Physics (IMP) at Lanzhou. In the present work we report the results of the tests and compare them with those of simulations. The transport of fast neutrons and their interactions with the different materials in the detector are simulated with the GEANT4 code, to understand the experimental results. The detector displays a clear response to the incident fast neutrons. However, an unexpected disagreement in the energy dependence of the response between the simulated and measured spectra is observed. The neutron sources used in our simulation include deuterium-tritium (DT, 14 MeV), deuterium-deuterium (DD, 2.45 MeV), and Am Be sources. The simulation results also show that among the secondary particles generated by the incident neutron, the main contributions to the total energy deposition are from recoil protons induced in hydrogen-rich HDPE or Kapton (GEM material), and activation photons induced by neutron interaction with Ar atoms. Their contributions account for 90% of the total energy deposition. In addition, the dependence of neutron deposited energy spectrum on the composition of the gas mixture is presented.
基金supported by the National Natural Science Foundation of China (Grant No. 11705143)the Open Foundation for Key Laboratories of National Defense Science and Technology of China (Grant No. 6142202031901)the Foundation for Research and Development of Applied Technology in Beilin District of Xi’an,China (Grant No. GX2047)。
文摘We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numerical simulation and experimental validation. The distribution characteristics and interaction mechanism of the flow field and electromagnetic field of the ICP wind tunnel are investigated using the multi-field coupling method of flow, electromagnetic, chemical, and thermodynamic field. The accuracy of the numerical simulation is validated by comparing the experimental results with the simulation results. Thereafter, the wind tunnel pressure, air velocity, electron density, Joule heating rate, Lorentz force, and electric field intensity obtained using the simulation are analyzed and discussed. The results indicate that for the 1.2-MW ICP wind tunnel, the maximum values of temperature, pressure, electron number density, and other parameters are observed during coil heating. The influence of the radial Lorentz force on the momentum transfer is stronger than that of the axial Lorentz force. The electron number density at the central axis and the amplitude and position of the Joule heating rate are affected by the radial Lorentz force. Moreover, the plasma in the wind tunnel is constantly in the subsonic flow state, and a strong eddy flow is easily generated at the inlet of the wind tunnel.
文摘The feasibility of ethanol separation from ethanol-water solution saturated with glucose by gas strippingis showil theoretically and experimentally. The effects of glucose on the saturated vapor pressure of ethanol, and thatof operating temperature and gas stripping flow rates, K/G, on Stripping result are discussed.
基金The National Natural Science Funds Committee(50174035)
文摘A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations with working face advanc- ing was simulated by a new model.The results show that the maximum value of bed separations moved forward gradually along with the working face advancing;the maxi- mum value of bed separations is 0.31~0.50 times of mining thickness.The key strata have a great influence upon surface subsidence during the overburden movement process.The mechanics parameters of new experiment are fitted with results in fields perfectly.
文摘Based on simulation experiments of a number of scientific research items, the latest progress of experiment method and test technique about equivalent material simulation are introduced. The bevelopment of experiment technique makes analogy simulation evolve into quantitative research about support-surrounding rock relationship from qualitative experiment.From this, large scale stereoscopic simulation experiment is developed, which has never appeared in underground pressure research in China. The present mold specification is 3 - 6 m×2. 0 m ×1. 5 m.