To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime...To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.展开更多
A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin...A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.展开更多
Deep foundations are currently used in engineering practice to solve problems caused by weak geotechnical characteristics of the ground.Impact pile driving is an interesting and viable solution from economic and techn...Deep foundations are currently used in engineering practice to solve problems caused by weak geotechnical characteristics of the ground.Impact pile driving is an interesting and viable solution from economic and technical points of view.However,it is necessary to ensure that the environmental drawbacks,namely ground-borne vibration,are adequately met.For this purpose,the authors propose an axisymmetric finite element method-perfectly matched layer(FEM-PML)approach,where the nonlinear behavior of the soil is addressed through an equivalent linear methodology.Given the complexity of the problem,an experimental test site was developed and fully characterized.The experimental work comprised in-situ and laboratory soil characterization,as well as the measurement of vibrations induced during pile driving.The comparison between experimental and numerical results demonstrated a very good agreement,from which it can be concluded that the proposed numerical approach is suitable for the prediction of vibrations induced by impact pile driving.The experimental database is available as supplemental data and may be used by other researchers in the validation of their prediction models.展开更多
The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the runn...The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the running train. This problem is studied using theoretical analysis, numerical simulation, and experimental study. In the train-bridge dynamic interaction system proposed in this paper, the train vehicle model is established by the rigid-body dynamics method, the bridge model is established by the finite element method, and the wheel/rail vertical and lateral interaction are simulated by the corresponding assumption and the Kalker linear creep theory, respectively. Track irregularity, structure deformation, wind load, collision load, structural damage, foundation scouring, and earthquake action are regarded as the excitation for the system. The train-bridge dynamic interaction system is solved by inter-history iteration. A case study of the dynamic response of a CRH380BL high-speed train running through a standard-design bridge in China is discussed. The dynamic responses of the vehicle and of the bridge subsystems are obtained for speeds ranging from 200 km-b-1 to 400 km.h-1, and the vibration mechanism are analyzed.展开更多
To analyze the spring disturbance torque caused by motionai cable harness in a stabilized platform, the Kirchhoff theory based cable harness model has been previously developed to dynamically simulate the motional cab...To analyze the spring disturbance torque caused by motionai cable harness in a stabilized platform, the Kirchhoff theory based cable harness model has been previously developed to dynamically simulate the motional cable harness. In this paper, this model was validated by comparing the simulation results with the experiment results ( both the spring force and the deformed profile of the motional cable harness). In the experiment, a special optical measuring instrument based on binocular vision was developed and the motion and deformation of cable harness were measured. A simpli- fied stabilized platform system was constructed, and the absolute value of spring disturbance force during the motion of this simplified frame was obtained by using a force gauge (0. 02 N precision). The physical parameters of experimental specimen were also measured. The experimental and simulated results showed good agreement. These results should be useful for better motional cable harness layout design and reliable evaluation of the spring disturbance torque.展开更多
Gastric cancer(GC)remains a formidable global health concern with significant morbidity and mortality rates,despite the fact that numerous advances have been made to improve conventional therapies.Xiaojianzhong decoct...Gastric cancer(GC)remains a formidable global health concern with significant morbidity and mortality rates,despite the fact that numerous advances have been made to improve conventional therapies.Xiaojianzhong decoction(XJZ),a traditional Chinese medicine,has garnered academic attention as a multicomponent,multitarget approach to managing GC.The present editorial explores the potential of XJZ in the treatment of GC through a comprehensive analysis of network pharmacology and experimental validation.Network pharmacology was used to identify key molecular targets of XJZ,including interleukin 6,prostaglandin-endoperoxide synthase 2,and matrix metalloproteinase 9,and in vitro experiments were used to confirm the efficacy of XJZ in inhibiting cell proliferation,inducing apoptosis,and modulating gene expression associated with GC progression.This editorial highlights XJZ as a promising therapeutic strategy for GC and indicates a need for further clinical exploration and validation of its efficacy.展开更多
Objective: To explore the specific pharmacological molecular mechanisms of Kai Xin San(KXS)on treating Alzheimer’s disease(AD) based on network pharmacology and experimental validation. Methods:The chemical compounds...Objective: To explore the specific pharmacological molecular mechanisms of Kai Xin San(KXS)on treating Alzheimer’s disease(AD) based on network pharmacology and experimental validation. Methods:The chemical compounds of KXS and their corresponding targets were screened using the Encyclopedia of Traditional Chinese Medicine(ETCM) database. AD-related target proteins were obtained from MalaCards database and DisGeNET databases. Key compounds and targets were identified from the compound-targetdisease network and protein-protein interaction(PPI) network analysis. Functional enrichment analysis predicted the potential key signaling pathways involved in the treatment of AD with KXS. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, the predicted key signaling pathway was validated experimentally. Positioning navigation and space search experiments were conducted to evaluate the cognitive improvement effect of KXS on AD rats. Western blot was used to further examine and investigate the expression of the key target proteins related to the predicted pathway. Results: In total, 38active compounds and 469 corresponding targets of KXS were screened, and 264 target proteins associated with AD were identified. The compound-target-disease and PPI networks identified key active ingredients and protein targets. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis suggested a potential effect of KXS in the treatment of AD via the amyloid beta(Aβ)-glycogen synthase kinase-3 beta(GSK3β)-Tau pathway. Molecular docking revealed a high binding affinity between the key ingredients and targets. In vivo,KXS treatment significantly improved cognitive deficits in AD rats induced by Aβ1-42, decreased the levels of Aβ, p-GSK3β, p-Tau and cyclin-dependent kinase 5, and increased the expressions of protein phosphatase 1alpha(PP1A) and PP2A(P<0.05 or P<0.01). Conclusion: KXS exerted neuroprotective effects by regulating the Aβ-GSK3β-Tau signaling pathway, which provides novel insights into the therapeutic mechanism of KXS and a feasible pharmacological strategy for the treatment of AD.展开更多
Influenza is an acute viral respiratory infection that has caused high morbidity and mortality worldwide.Influenza A virus(IAV)has been found to activate multiple programmed cell death pathways,including ferroptosis.F...Influenza is an acute viral respiratory infection that has caused high morbidity and mortality worldwide.Influenza A virus(IAV)has been found to activate multiple programmed cell death pathways,including ferroptosis.Ferroptosis is a novel form of programmed cell death in which the accumulation of intracellular iron promotes lipid peroxidation,leading to cell death.However,little is known about how influenza viruses induce ferroptosis in the host cells.In this study,based on network pharmacology,we predicted the mechanism of action of Maxing Shigan decoction(MXSGD)in IAV-induced ferroptosis,and found that this process was related to biological processes,cellular components,molecular function and multiple signaling pathways,where the hypoxia inducible factor-1(HIF-1)signaling pathway plays a significant role.Subsequently,we constructed the mouse lung epithelial(MLE-12)cell model by IAV-infected in vitro cell experiments,and revealed that IAV infection induced cellular ferroptosis that was characterized by mitochondrial damage,increased reactive oxygen species(ROS)release,increased total iron and iron ion contents,decreased expression of ferroptosis marker gene recombinant glutathione peroxidase 4(GPX4),increased expression of acyl-CoA synthetase long chain family member 4(ACSL4),and enhanced activation of hypoxia inducible factor-1α(HIF-1α),induced nitric oxide synthase(iNOS)and vascular endothelial growth factor(VEGF)in the HIF-1 signaling pathway.Treatment with MXSGD effectively reduced intracellular viral load,while reducing ROS,total iron and ferrous ion contents,repairing mitochondrial results and inhibiting the expression of cellular ferroptosis and the HIF-1 signaling pathway.Finally,based on animal experiments,it was found that MXSGD effectively alleviated pulmonary congestion,edema and inflammation in IAV-infected mice,and inhibited the expression of ferroptosis-related protein and the HIF-1 signaling pathway in lung tissues.展开更多
Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum s...Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.展开更多
BACKGROUND Diabetic kidney disease(DKD)is one of the serious complications of diabetes mellitus,and the existing treatments cannot meet the needs of today's patients.Traditional Chinese medicine has been validated...BACKGROUND Diabetic kidney disease(DKD)is one of the serious complications of diabetes mellitus,and the existing treatments cannot meet the needs of today's patients.Traditional Chinese medicine has been validated for its efficacy in DKD after many years of clinical application.However,the specific mechanism by which it works is still unclear.Elucidating the molecular mechanism of the Nardostachyos Radix et Rhizoma-rhubarb drug pair(NRDP)for the treatment of DKD will provide a new way of thinking for the research and development of new drugs.AIM To investigate the mechanism of the NRDP in DKD by network pharmacology combined with molecular docking,and then verify the initial findings by in vitro experiments.METHODS The Traditional Chinese Medicine Systems Pharmacology(TCMSP)database was used to screen active ingredient targets of NRDP.Targets for DKD were obtained based on the Genecards,OMIM,and TTD databases.The VENNY 2.1 database was used to obtain DKD and NRDP intersection targets and their Venn diagram,and Cytoscape 3.9.0 was used to build a"drug-component-target-disease"network.The String database was used to construct protein interaction networks.Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis and Gene Ontology analysis were performed based on the DAVID database.After selecting the targets and the active ingredients,Autodock software was used to perform molecular docking.In experimental validation using renal tubular epithelial cells(TCMK-1),we used the Cell Counting Kit-8 assay to detect the effect of NRDP on cell viability,with glucose solution used to mimic a hyperglycemic environment.Flow cytometry was used to detect the cell cycle progression and apoptosis.Western blot was used to detect the protein expression of STAT3,p-STAT3,BAX,BCL-2,Caspase9,and Caspase3.RESULTS A total of 10 active ingredients and 85 targets with 111 disease-related signaling pathways were obtained for NRDP.Enrichment analysis of KEGG pathways was performed to determine advanced glycation end products(AGEs)-receptor for AGEs(RAGE)signaling as the core pathway.Molecular docking showed good binding between each active ingredient and its core targets.In vitro experiments showed that NRDP inhibited the viability of TCMK-1 cells,blocked cell cycle progression in the G0/G1 phase,and reduced apoptosis in a concentrationdependent manner.Based on the results of Western blot analysis,NRDP differentially downregulated p-STAT3,BAX,Caspase3,and Caspase9 protein levels(P<0.01 or P<0.05).In addition,BAX/BCL-2 and p-STAT3/STAT3 ratios were reduced,while BCL-2 and STAT3 protein expression was upregulated(P<0.01).CONCLUSION NRDP may upregulate BCL-2 and STAT3 protein expression,and downregulate BAX,Caspase3,and Caspase9 protein expression,thus activating the AGE-RAGE signaling pathway,inhibiting the vitality of TCMK-1 cells,reducing their apoptosis.and arresting them in the G0/G1 phase to protect them from damage by high glucose.展开更多
microRNAs(miRNAs)are 20–24 nucleotide(nt)RNAs that regulate eukaryotic gene expression post-transcriptionally by the degradation or translational inhibition of their target messenger RNAs(mRNAs).To identify miRNA tar...microRNAs(miRNAs)are 20–24 nucleotide(nt)RNAs that regulate eukaryotic gene expression post-transcriptionally by the degradation or translational inhibition of their target messenger RNAs(mRNAs).To identify miRNA target genes will help a lot by understanding their biological functions.Sophisticated computational approaches for miRNA target prediction,and effective biological techniques for validating these targets now play a central role in elucidating their functions.Owing to the imperfect complementarity of animal miRNAs with their targets,it is difficult to judge the accuracy of the prediction.Complexity of regulation by miRNA-mediated targets at protein and mRNAs levels has made it more challenging to identify the targets.To date,only a few miRNAs targets are confirmed.In this article,we review the methods of miRNA target prediction and the experimental validation for their corresponding mRNA targets in animals.展开更多
Given that energy conservation and environmental protection are two important goals for the automotive industry, the application of a hybrid electric powertrain can improve vehicle energy efficiency while decreasing f...Given that energy conservation and environmental protection are two important goals for the automotive industry, the application of a hybrid electric powertrain can improve vehicle energy efficiency while decreasing fuel consumption and engine emissions. Planetary gear-based power-split hybrid powertrains have become widely used in passenger vehicles, but remain rarely employed on transit buses. This study proposes a novel hybrid powertrain based on two planetary gear sets(CHS) and presents its operating principles along with development of a control strategy for the powertrain. The CHS hybrid powertrain operates in electric mode when the driving power demand is low, and changes to a hybrid electric mode according to the power-split principle of the planetary gear set. To validate the feasibility of the designed CHS hybrid powertrain, a prototype transit bus equipped with the designed hybrid powertrain system was built, and the operating characteristics of the system were analyzed through a performance test conducted on a chassis dynamometer. Compared with a conventional powertrain, the CHS hybrid powertrain can reduce fuel consumption by 39%. Thus, the CHS hybrid powertrain is a good solution for heavy-duty applications such as hybrid transit buses because of its simple structure and excellent fuel efficiency.展开更多
The understanding and prediction of preferential fluid flow in porous media have attracted considerable attention in various engineering fields because of the implications of such flows in leading to a non-equilibrium...The understanding and prediction of preferential fluid flow in porous media have attracted considerable attention in various engineering fields because of the implications of such flows in leading to a non-equilibrium fluid flow in the subsurface. In this study, a novel algorithm is proposed to predict preferential flow paths based on the topologically equivalent network of a porous structure and the flow resistance of flow paths. The equivalent flow network was constructed using Poiseuille's law and the maximal inscribed sphere algorithm. The flow resistance of each path was then determined based on Darcy's law. It was determined that fluid tends to follow paths with lower flow resistance. A computer program was developed and applied to an actual porous structure. To validate the algorithm and program, we tested and recorded two-dimensional(2 D) water flow using an ablated Perspex sheet featuring the same porous structure investigated using the analytical calculations. The results show that the measured preferential flow paths are consistent with the predictions.展开更多
The heat transfer perfonmance of a vertical two-phase closed thermosyphon(TPCT)used in a geothermal heat pump was experimentally investigated.The TPCT is a verticalplain steel pipe with inner diameter of 114 mm and bo...The heat transfer perfonmance of a vertical two-phase closed thermosyphon(TPCT)used in a geothermal heat pump was experimentally investigated.The TPCT is a verticalplain steel pipe with inner diameter of 114 mm and bored 368 m deep underground.Carbon dioxide(CO_(2))is used as working fluid.In the TPCT there is no condensation section.CO_(2)is condensed by the evaporator pf the heat pump,flows into the head of the TPCT and nuns down as a falling film along the inner wall of the pipe.For the heat transfer simulation in the TPCT,a quasi-dynamic model in which the mass transfer between the liquid and vapor phases as well as the conduction heat transfer from the surrounding soil towards the pipe is treated dynamically.However the film flow modeling is based on the Nusselt theory of frilm condenssation.The compauison of the experimental data with the numerical simulation is presented and discussed.展开更多
This paper aims to present the configuration design approach and the energy management strategy (EMS) of a series-parallel hybrid electric transit bus (SPHEB) jointly developed by Shanghai Automotive Industry Co. ...This paper aims to present the configuration design approach and the energy management strategy (EMS) of a series-parallel hybrid electric transit bus (SPHEB) jointly developed by Shanghai Automotive Industry Co. Ltd. (SAIC) and Shanghai Jiao Tong University (SJTU), China. A major feature of this SPHEB is that a novel manual transmission is designed to switch the powertrain configuration between series and parallel types. To reduce the fuel consumption as well as sustain the battery state of charge, an EMS including seven energy flow modes is designed and applied to this SPHEB. Governed by this EMS, the engine is maintained to operate in high efficiency regions. The experimental test carded on the transit bus city driving cycle is described and analyzed. The experimental results demonstrate the technical feasibility and fuel economy of this approach.展开更多
MicroRNAs (miRNAs) are a group of regulatory RNAs that regulate gene expression post-transcriptionally by the degradation or translational inhibition of their target messenger RNAs (mRNAs). Regulation is accomplis...MicroRNAs (miRNAs) are a group of regulatory RNAs that regulate gene expression post-transcriptionally by the degradation or translational inhibition of their target messenger RNAs (mRNAs). Regulation is accomplished when the 22-25 nucleotide miRNAs bind to complementary sequences in the 3'-untranslated regions (UTR). One barrier to miRNA research is to find target genes. Although computational target predictions have shed light on important aspects of microRNA target recognition, questions remain concerning the rates of false positives. In addition, we do not completely understand how microRNAs can recognize and regulate their targets. As such, experimental positive predictions and allow for an unbiased stu ap dy proaches are required, which can reflect in vivo processes, eliminating false of microRNA target recognition. In this review, we summarized experimental approaches that have been described for the identification and validation of mRNA targets associated with specific miRNAs.展开更多
This study reports the results of a finite element simulation of powder mixed electric discharge machining process for H11 Hot Die steel material using relevant boundary conditions and reasonable assumptions.The crate...This study reports the results of a finite element simulation of powder mixed electric discharge machining process for H11 Hot Die steel material using relevant boundary conditions and reasonable assumptions.The crater shape was developed using simulated temperature profiles to estimate the volume removed in a single crater.The temperature distribution on the workpiece was used to predict the cooling rate and calculate the stresses generated due to thermal loading.Subsequently,the simulation results were experimentally validated by physically measuring the crater shape and volume.From the results it was concluded that about 25%of heat is transmitted to the workpiece during machining at the process conditions used in the experiment.The microscopic pictures showed bigger craters with increase in current.The machined surface showed overlapping craters with surface cracks suggesting a high cooling rate.展开更多
Food losses in the developing country are thought to be 50% of the fruits and vegetables grown and 25% of harvested food grain. Food preservation can reduce wastage of a harvest surplus, allow storage for food shortag...Food losses in the developing country are thought to be 50% of the fruits and vegetables grown and 25% of harvested food grain. Food preservation can reduce wastage of a harvest surplus, allow storage for food shortages, and in some cases facilitate export to high-value markets. Drying is one of the oldest methods of food preservation. Drying makes produce lighter, smaller, and less likely to spoil and helps to minimize the moisture content in coffee beans as high moisture content during storage is certain to ruin the taste and appearance of coffee. This work presents the results of an experimental study of forced convection drying of coffee cherries in a modified Icaro solar dryer. The study aims to validate the numerical models developed for further research. The experimental tests envisaged also aim to determine the mass loss curves of the product by fixing or calculating its initial mass (1 kg), its initial water content (70%), the ambient temperature, the drying airflow (0.02 m<sup>3.</sup>s<sup>-1</sup> to 0.09 m<sup>3.</sup>s<sup>-1</sup>) and the exchange coefficients. The influence of these aerothermal parameters on the drying time of a most commercialized coffee variety (Robusta) was studied. Finally, the results revealed an increase in the efficiency of the heat transfer air and a reduction in the water content of the coffee cherry from 70% to 9.87%, after 30.2 hours.展开更多
Small reactors have become a new hotspot of international nuclear energy research.The nuclear heating reactor(NHR)technology developed by Tsinghua University is an important multipurpose small reactor solution with fe...Small reactors have become a new hotspot of international nuclear energy research.The nuclear heating reactor(NHR)technology developed by Tsinghua University is an important multipurpose small reactor solution with features such as high integration,modular design and full power natural circulation.A new small reactor based on the existing NHR-200 reactor was developed by the Institute of Nuclear and New Energy Technology of Tsinghua University.A full-scale natural circulation test loop with the same operating parameters as the actual reactor was built in order to experimentally validate the natural circulation ability of the reactor primary loop and heat-transfer ability of fuel assemblies and heat exchangers.Corresponding results are given in detail,including parameter validation of the reactor primary loop,flow rules of the natural circulation and heat-transfer coefficients of heaters and heat exchangers,which can be directly used in the actual reactor as a reference for optimization design.Finally,a characteristic parameter k is proposed to represent the natural circulation ability of a system.By using the new data arrangement method in the form of parameter k,comprehensive experimental results of the natural circulation can be represented by a simple integrated expression.The work in this paper is of importance in broadening application fields and pushing forward commercialization of the NHR type reactors.展开更多
A boundary plasma turbulence code BOUT is presented. The preliminary encour- aging results have been obtained when comparing with probe measurements for a typical Ohmic discharge in HT-7 tokamak. The validation and be...A boundary plasma turbulence code BOUT is presented. The preliminary encour- aging results have been obtained when comparing with probe measurements for a typical Ohmic discharge in HT-7 tokamak. The validation and benchmark of BOUT code and experimental diagnostic tools for fusion boundary plasma turbulence is proposed.展开更多
文摘To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.
基金supported in part by the Nation Natural Science Foundation of China under Grant No.52175099China Postdoctoral Science Foundation under Grant No.2020M671494Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No.2020Z179。
文摘A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.
基金Programmatic funding-UIDP/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC)Project PTDC/ECI-CON/29634/2017-POCI-01-0145-FEDER-029634-funded by FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalização(POCI)+1 种基金by national funds(PIDDAC)through FCT/MCTES.Grant No.2022.00898CEECIND(Scientific Employment Stimulus-5th Edition)provided by “FCT-Fundação para a Ciência e Tecnologia”。
文摘Deep foundations are currently used in engineering practice to solve problems caused by weak geotechnical characteristics of the ground.Impact pile driving is an interesting and viable solution from economic and technical points of view.However,it is necessary to ensure that the environmental drawbacks,namely ground-borne vibration,are adequately met.For this purpose,the authors propose an axisymmetric finite element method-perfectly matched layer(FEM-PML)approach,where the nonlinear behavior of the soil is addressed through an equivalent linear methodology.Given the complexity of the problem,an experimental test site was developed and fully characterized.The experimental work comprised in-situ and laboratory soil characterization,as well as the measurement of vibrations induced during pile driving.The comparison between experimental and numerical results demonstrated a very good agreement,from which it can be concluded that the proposed numerical approach is suitable for the prediction of vibrations induced by impact pile driving.The experimental database is available as supplemental data and may be used by other researchers in the validation of their prediction models.
基金Acknowledgements This research is sponsored by the Major State Basic Research Development Program of China ("973" Program) (2013CB036203), the 111 Project (B13002), and the National Natural Science Foundation of China (U1434205, U1434210, 51338001 ).
文摘The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the running train. This problem is studied using theoretical analysis, numerical simulation, and experimental study. In the train-bridge dynamic interaction system proposed in this paper, the train vehicle model is established by the rigid-body dynamics method, the bridge model is established by the finite element method, and the wheel/rail vertical and lateral interaction are simulated by the corresponding assumption and the Kalker linear creep theory, respectively. Track irregularity, structure deformation, wind load, collision load, structural damage, foundation scouring, and earthquake action are regarded as the excitation for the system. The train-bridge dynamic interaction system is solved by inter-history iteration. A case study of the dynamic response of a CRH380BL high-speed train running through a standard-design bridge in China is discussed. The dynamic responses of the vehicle and of the bridge subsystems are obtained for speeds ranging from 200 km-b-1 to 400 km.h-1, and the vibration mechanism are analyzed.
基金Supported by the National Natural Science Foundation of China(50805009)
文摘To analyze the spring disturbance torque caused by motionai cable harness in a stabilized platform, the Kirchhoff theory based cable harness model has been previously developed to dynamically simulate the motional cable harness. In this paper, this model was validated by comparing the simulation results with the experiment results ( both the spring force and the deformed profile of the motional cable harness). In the experiment, a special optical measuring instrument based on binocular vision was developed and the motion and deformation of cable harness were measured. A simpli- fied stabilized platform system was constructed, and the absolute value of spring disturbance force during the motion of this simplified frame was obtained by using a force gauge (0. 02 N precision). The physical parameters of experimental specimen were also measured. The experimental and simulated results showed good agreement. These results should be useful for better motional cable harness layout design and reliable evaluation of the spring disturbance torque.
文摘Gastric cancer(GC)remains a formidable global health concern with significant morbidity and mortality rates,despite the fact that numerous advances have been made to improve conventional therapies.Xiaojianzhong decoction(XJZ),a traditional Chinese medicine,has garnered academic attention as a multicomponent,multitarget approach to managing GC.The present editorial explores the potential of XJZ in the treatment of GC through a comprehensive analysis of network pharmacology and experimental validation.Network pharmacology was used to identify key molecular targets of XJZ,including interleukin 6,prostaglandin-endoperoxide synthase 2,and matrix metalloproteinase 9,and in vitro experiments were used to confirm the efficacy of XJZ in inhibiting cell proliferation,inducing apoptosis,and modulating gene expression associated with GC progression.This editorial highlights XJZ as a promising therapeutic strategy for GC and indicates a need for further clinical exploration and validation of its efficacy.
基金Supported by the National Science and Technology Major Project of China (No.2009ZX09103-347)。
文摘Objective: To explore the specific pharmacological molecular mechanisms of Kai Xin San(KXS)on treating Alzheimer’s disease(AD) based on network pharmacology and experimental validation. Methods:The chemical compounds of KXS and their corresponding targets were screened using the Encyclopedia of Traditional Chinese Medicine(ETCM) database. AD-related target proteins were obtained from MalaCards database and DisGeNET databases. Key compounds and targets were identified from the compound-targetdisease network and protein-protein interaction(PPI) network analysis. Functional enrichment analysis predicted the potential key signaling pathways involved in the treatment of AD with KXS. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, the predicted key signaling pathway was validated experimentally. Positioning navigation and space search experiments were conducted to evaluate the cognitive improvement effect of KXS on AD rats. Western blot was used to further examine and investigate the expression of the key target proteins related to the predicted pathway. Results: In total, 38active compounds and 469 corresponding targets of KXS were screened, and 264 target proteins associated with AD were identified. The compound-target-disease and PPI networks identified key active ingredients and protein targets. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis suggested a potential effect of KXS in the treatment of AD via the amyloid beta(Aβ)-glycogen synthase kinase-3 beta(GSK3β)-Tau pathway. Molecular docking revealed a high binding affinity between the key ingredients and targets. In vivo,KXS treatment significantly improved cognitive deficits in AD rats induced by Aβ1-42, decreased the levels of Aβ, p-GSK3β, p-Tau and cyclin-dependent kinase 5, and increased the expressions of protein phosphatase 1alpha(PP1A) and PP2A(P<0.05 or P<0.01). Conclusion: KXS exerted neuroprotective effects by regulating the Aβ-GSK3β-Tau signaling pathway, which provides novel insights into the therapeutic mechanism of KXS and a feasible pharmacological strategy for the treatment of AD.
基金supported by the National Natural Science Foundation of China(No.81973670)the Natural Science Foundation of Hunan Province(No.2020J5418)Hunan Provincial Open Fund of the Key Laboratory of the Pathogen Biology of Integrated Traditional Chinese and Western Medicine(No.2022-KFJJ02).
文摘Influenza is an acute viral respiratory infection that has caused high morbidity and mortality worldwide.Influenza A virus(IAV)has been found to activate multiple programmed cell death pathways,including ferroptosis.Ferroptosis is a novel form of programmed cell death in which the accumulation of intracellular iron promotes lipid peroxidation,leading to cell death.However,little is known about how influenza viruses induce ferroptosis in the host cells.In this study,based on network pharmacology,we predicted the mechanism of action of Maxing Shigan decoction(MXSGD)in IAV-induced ferroptosis,and found that this process was related to biological processes,cellular components,molecular function and multiple signaling pathways,where the hypoxia inducible factor-1(HIF-1)signaling pathway plays a significant role.Subsequently,we constructed the mouse lung epithelial(MLE-12)cell model by IAV-infected in vitro cell experiments,and revealed that IAV infection induced cellular ferroptosis that was characterized by mitochondrial damage,increased reactive oxygen species(ROS)release,increased total iron and iron ion contents,decreased expression of ferroptosis marker gene recombinant glutathione peroxidase 4(GPX4),increased expression of acyl-CoA synthetase long chain family member 4(ACSL4),and enhanced activation of hypoxia inducible factor-1α(HIF-1α),induced nitric oxide synthase(iNOS)and vascular endothelial growth factor(VEGF)in the HIF-1 signaling pathway.Treatment with MXSGD effectively reduced intracellular viral load,while reducing ROS,total iron and ferrous ion contents,repairing mitochondrial results and inhibiting the expression of cellular ferroptosis and the HIF-1 signaling pathway.Finally,based on animal experiments,it was found that MXSGD effectively alleviated pulmonary congestion,edema and inflammation in IAV-infected mice,and inhibited the expression of ferroptosis-related protein and the HIF-1 signaling pathway in lung tissues.
基金supported by is supported by the Shanghai Municipal Science and Technology Major Projectthe support from Shanghai Super Postdoctoral Incentive Program
文摘Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.
基金Supported by National Natural Science Foundation of China,No.81573695,No.81860894,and No.81674096Ningxia Key Research and Development Plan Project,No.2021BEG03106.
文摘BACKGROUND Diabetic kidney disease(DKD)is one of the serious complications of diabetes mellitus,and the existing treatments cannot meet the needs of today's patients.Traditional Chinese medicine has been validated for its efficacy in DKD after many years of clinical application.However,the specific mechanism by which it works is still unclear.Elucidating the molecular mechanism of the Nardostachyos Radix et Rhizoma-rhubarb drug pair(NRDP)for the treatment of DKD will provide a new way of thinking for the research and development of new drugs.AIM To investigate the mechanism of the NRDP in DKD by network pharmacology combined with molecular docking,and then verify the initial findings by in vitro experiments.METHODS The Traditional Chinese Medicine Systems Pharmacology(TCMSP)database was used to screen active ingredient targets of NRDP.Targets for DKD were obtained based on the Genecards,OMIM,and TTD databases.The VENNY 2.1 database was used to obtain DKD and NRDP intersection targets and their Venn diagram,and Cytoscape 3.9.0 was used to build a"drug-component-target-disease"network.The String database was used to construct protein interaction networks.Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis and Gene Ontology analysis were performed based on the DAVID database.After selecting the targets and the active ingredients,Autodock software was used to perform molecular docking.In experimental validation using renal tubular epithelial cells(TCMK-1),we used the Cell Counting Kit-8 assay to detect the effect of NRDP on cell viability,with glucose solution used to mimic a hyperglycemic environment.Flow cytometry was used to detect the cell cycle progression and apoptosis.Western blot was used to detect the protein expression of STAT3,p-STAT3,BAX,BCL-2,Caspase9,and Caspase3.RESULTS A total of 10 active ingredients and 85 targets with 111 disease-related signaling pathways were obtained for NRDP.Enrichment analysis of KEGG pathways was performed to determine advanced glycation end products(AGEs)-receptor for AGEs(RAGE)signaling as the core pathway.Molecular docking showed good binding between each active ingredient and its core targets.In vitro experiments showed that NRDP inhibited the viability of TCMK-1 cells,blocked cell cycle progression in the G0/G1 phase,and reduced apoptosis in a concentrationdependent manner.Based on the results of Western blot analysis,NRDP differentially downregulated p-STAT3,BAX,Caspase3,and Caspase9 protein levels(P<0.01 or P<0.05).In addition,BAX/BCL-2 and p-STAT3/STAT3 ratios were reduced,while BCL-2 and STAT3 protein expression was upregulated(P<0.01).CONCLUSION NRDP may upregulate BCL-2 and STAT3 protein expression,and downregulate BAX,Caspase3,and Caspase9 protein expression,thus activating the AGE-RAGE signaling pathway,inhibiting the vitality of TCMK-1 cells,reducing their apoptosis.and arresting them in the G0/G1 phase to protect them from damage by high glucose.
基金supported by research grants from the National Basic Research Program of China(973 Program)(No.2005CB121004)the National Programs for High Technology Research and Development Program of China(863 Program)(No.2006AA10A119)Innovation Foundation for Graduate Students of Jiangsu Province and the National Natural Science Foundation of China(No.61001013).
文摘microRNAs(miRNAs)are 20–24 nucleotide(nt)RNAs that regulate eukaryotic gene expression post-transcriptionally by the degradation or translational inhibition of their target messenger RNAs(mRNAs).To identify miRNA target genes will help a lot by understanding their biological functions.Sophisticated computational approaches for miRNA target prediction,and effective biological techniques for validating these targets now play a central role in elucidating their functions.Owing to the imperfect complementarity of animal miRNAs with their targets,it is difficult to judge the accuracy of the prediction.Complexity of regulation by miRNA-mediated targets at protein and mRNAs levels has made it more challenging to identify the targets.To date,only a few miRNAs targets are confirmed.In this article,we review the methods of miRNA target prediction and the experimental validation for their corresponding mRNA targets in animals.
文摘Given that energy conservation and environmental protection are two important goals for the automotive industry, the application of a hybrid electric powertrain can improve vehicle energy efficiency while decreasing fuel consumption and engine emissions. Planetary gear-based power-split hybrid powertrains have become widely used in passenger vehicles, but remain rarely employed on transit buses. This study proposes a novel hybrid powertrain based on two planetary gear sets(CHS) and presents its operating principles along with development of a control strategy for the powertrain. The CHS hybrid powertrain operates in electric mode when the driving power demand is low, and changes to a hybrid electric mode according to the power-split principle of the planetary gear set. To validate the feasibility of the designed CHS hybrid powertrain, a prototype transit bus equipped with the designed hybrid powertrain system was built, and the operating characteristics of the system were analyzed through a performance test conducted on a chassis dynamometer. Compared with a conventional powertrain, the CHS hybrid powertrain can reduce fuel consumption by 39%. Thus, the CHS hybrid powertrain is a good solution for heavy-duty applications such as hybrid transit buses because of its simple structure and excellent fuel efficiency.
基金supported by the National Natural Science Foundation of China(Grants Nos.51374213,51674251&51727807)the State Key Research Development Program of China(Grant No.2016YFC0600705)+2 种基金the National Natural Science Fund for Distinguished Young Scholars(Grant No.51125017)the Fund for Creative Research and Development Group Program of Jiangsu Province(2014-27)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.PAPD-2014)
文摘The understanding and prediction of preferential fluid flow in porous media have attracted considerable attention in various engineering fields because of the implications of such flows in leading to a non-equilibrium fluid flow in the subsurface. In this study, a novel algorithm is proposed to predict preferential flow paths based on the topologically equivalent network of a porous structure and the flow resistance of flow paths. The equivalent flow network was constructed using Poiseuille's law and the maximal inscribed sphere algorithm. The flow resistance of each path was then determined based on Darcy's law. It was determined that fluid tends to follow paths with lower flow resistance. A computer program was developed and applied to an actual porous structure. To validate the algorithm and program, we tested and recorded two-dimensional(2 D) water flow using an ablated Perspex sheet featuring the same porous structure investigated using the analytical calculations. The results show that the measured preferential flow paths are consistent with the predictions.
基金The present research work was supported by the Federal Ministry for Economic Affairs and Energy of Germanyunder the funding code FKZ:03ET1050B.
文摘The heat transfer perfonmance of a vertical two-phase closed thermosyphon(TPCT)used in a geothermal heat pump was experimentally investigated.The TPCT is a verticalplain steel pipe with inner diameter of 114 mm and bored 368 m deep underground.Carbon dioxide(CO_(2))is used as working fluid.In the TPCT there is no condensation section.CO_(2)is condensed by the evaporator pf the heat pump,flows into the head of the TPCT and nuns down as a falling film along the inner wall of the pipe.For the heat transfer simulation in the TPCT,a quasi-dynamic model in which the mass transfer between the liquid and vapor phases as well as the conduction heat transfer from the surrounding soil towards the pipe is treated dynamically.However the film flow modeling is based on the Nusselt theory of frilm condenssation.The compauison of the experimental data with the numerical simulation is presented and discussed.
基金Project (No. 2006AA11A127) supported by the Hi-Tech (863) Research and Development Program of China
文摘This paper aims to present the configuration design approach and the energy management strategy (EMS) of a series-parallel hybrid electric transit bus (SPHEB) jointly developed by Shanghai Automotive Industry Co. Ltd. (SAIC) and Shanghai Jiao Tong University (SJTU), China. A major feature of this SPHEB is that a novel manual transmission is designed to switch the powertrain configuration between series and parallel types. To reduce the fuel consumption as well as sustain the battery state of charge, an EMS including seven energy flow modes is designed and applied to this SPHEB. Governed by this EMS, the engine is maintained to operate in high efficiency regions. The experimental test carded on the transit bus city driving cycle is described and analyzed. The experimental results demonstrate the technical feasibility and fuel economy of this approach.
基金Supported by the National Natural Science Foundation of China (30570990, 30471059, 31171578)the "863" project (2008AA10Z153)+2 种基金the Key Research Plan of Heilongjiang Province (GA06B103-3)the Innovation Research Group of NEAU (CXT004)the Research Fund for the Doctoral Program of Higher Education of China (20102325120002)
文摘MicroRNAs (miRNAs) are a group of regulatory RNAs that regulate gene expression post-transcriptionally by the degradation or translational inhibition of their target messenger RNAs (mRNAs). Regulation is accomplished when the 22-25 nucleotide miRNAs bind to complementary sequences in the 3'-untranslated regions (UTR). One barrier to miRNA research is to find target genes. Although computational target predictions have shed light on important aspects of microRNA target recognition, questions remain concerning the rates of false positives. In addition, we do not completely understand how microRNAs can recognize and regulate their targets. As such, experimental positive predictions and allow for an unbiased stu ap dy proaches are required, which can reflect in vivo processes, eliminating false of microRNA target recognition. In this review, we summarized experimental approaches that have been described for the identification and validation of mRNA targets associated with specific miRNAs.
文摘This study reports the results of a finite element simulation of powder mixed electric discharge machining process for H11 Hot Die steel material using relevant boundary conditions and reasonable assumptions.The crater shape was developed using simulated temperature profiles to estimate the volume removed in a single crater.The temperature distribution on the workpiece was used to predict the cooling rate and calculate the stresses generated due to thermal loading.Subsequently,the simulation results were experimentally validated by physically measuring the crater shape and volume.From the results it was concluded that about 25%of heat is transmitted to the workpiece during machining at the process conditions used in the experiment.The microscopic pictures showed bigger craters with increase in current.The machined surface showed overlapping craters with surface cracks suggesting a high cooling rate.
文摘Food losses in the developing country are thought to be 50% of the fruits and vegetables grown and 25% of harvested food grain. Food preservation can reduce wastage of a harvest surplus, allow storage for food shortages, and in some cases facilitate export to high-value markets. Drying is one of the oldest methods of food preservation. Drying makes produce lighter, smaller, and less likely to spoil and helps to minimize the moisture content in coffee beans as high moisture content during storage is certain to ruin the taste and appearance of coffee. This work presents the results of an experimental study of forced convection drying of coffee cherries in a modified Icaro solar dryer. The study aims to validate the numerical models developed for further research. The experimental tests envisaged also aim to determine the mass loss curves of the product by fixing or calculating its initial mass (1 kg), its initial water content (70%), the ambient temperature, the drying airflow (0.02 m<sup>3.</sup>s<sup>-1</sup> to 0.09 m<sup>3.</sup>s<sup>-1</sup>) and the exchange coefficients. The influence of these aerothermal parameters on the drying time of a most commercialized coffee variety (Robusta) was studied. Finally, the results revealed an increase in the efficiency of the heat transfer air and a reduction in the water content of the coffee cherry from 70% to 9.87%, after 30.2 hours.
基金supported by the National S&T Major Project(Grant No.ZX06901)the National Natural Science Foundation of China(Grant No.11072131)
文摘Small reactors have become a new hotspot of international nuclear energy research.The nuclear heating reactor(NHR)technology developed by Tsinghua University is an important multipurpose small reactor solution with features such as high integration,modular design and full power natural circulation.A new small reactor based on the existing NHR-200 reactor was developed by the Institute of Nuclear and New Energy Technology of Tsinghua University.A full-scale natural circulation test loop with the same operating parameters as the actual reactor was built in order to experimentally validate the natural circulation ability of the reactor primary loop and heat-transfer ability of fuel assemblies and heat exchangers.Corresponding results are given in detail,including parameter validation of the reactor primary loop,flow rules of the natural circulation and heat-transfer coefficients of heaters and heat exchangers,which can be directly used in the actual reactor as a reference for optimization design.Finally,a characteristic parameter k is proposed to represent the natural circulation ability of a system.By using the new data arrangement method in the form of parameter k,comprehensive experimental results of the natural circulation can be represented by a simple integrated expression.The work in this paper is of importance in broadening application fields and pushing forward commercialization of the NHR type reactors.
基金Work performed under the auspices of the U. S. Department of Energy by University of California Lawrence LivermoreNational Lab
文摘A boundary plasma turbulence code BOUT is presented. The preliminary encour- aging results have been obtained when comparing with probe measurements for a typical Ohmic discharge in HT-7 tokamak. The validation and benchmark of BOUT code and experimental diagnostic tools for fusion boundary plasma turbulence is proposed.